1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
//! Definition of the `LoopFn` combinator, implementing `Future` loops. //! //! Shamelessly stolen from [the old futures](https://docs.rs/futures/0.1.27/futures/future/fn.loop_fn.html). use core::future::Future; use core::task::Context; use core::pin::Pin; use core::marker::Unpin; #[doc(hidden)] pub use core::task::Poll; macro_rules! ready { ($e:expr) => (match $e { $crate::loop_future::Poll::Ready(t) => t, $crate::loop_future::Poll::Pending => return $crate::loop_future::Poll::Pending, }) } /// The status of a `loop_fn` loop. #[derive(Debug)] pub enum Loop<T, S> { /// Indicates that the loop has completed with output `T`. Break(T), /// Indicates that the loop function should be called again with input /// state `S`. Continue(S), } /// A future implementing a tail-recursive loop. /// /// Created by the `loop_fn` function. #[derive(Debug)] pub struct LoopFn<A, F> { /// Future representing the current loop iteration. future: A, /// Function called on every new iteration to generate that iteration's /// future func: F, } /// Creates a new future implementing a tail-recursive loop. /// /// The loop function is immediately called with `initial_state` and should /// return a value that can be converted to a future. On successful completion, /// this future should output a `Loop<T, S>` to indicate the status of the /// loop. /// /// `Loop::Break(T)` halts the loop and completes the future with output `T`. /// /// `Loop::Continue(S)` reinvokes the loop function with state `S`. The returned /// future will be subsequently polled for a new `Loop<T, S>` value. /// /// # Examples /// /// ``` /// use sunrise_libutils::loop_future::{loop_fn, Loop}; /// use core::future::Future; /// use futures::future::{FutureExt, ready}; /// /// struct Client { /// ping_count: u8, /// } /// /// impl Client { /// fn new() -> Self { /// Client { ping_count: 0 } /// } /// /// fn send_ping(self) -> impl Future<Output=Self> { /// ready(Client { ping_count: self.ping_count + 1 }) /// } /// /// fn receive_pong(self) -> impl Future<Output=(Self, bool)> { /// let done = self.ping_count >= 5; /// ready((self, done)) /// } /// } /// /// let ping_til_done = loop_fn(Client::new(), |client| { /// client.send_ping() /// .then(|client| client.receive_pong()) /// .map(|(client, done)| { /// if done { /// Loop::Break(client) /// } else { /// Loop::Continue(client) /// } /// }) /// }); /// ``` pub fn loop_fn<S, T, A, F>(initial_state: S, mut func: F) -> LoopFn<A, F> where F: FnMut(S) -> A, A: Future<Output = Loop<T, S>> + Unpin, { LoopFn { future: func(initial_state), func: func, } } impl<S, T, A, F> Future for LoopFn<A, F> where F: FnMut(S) -> A, A: Future<Output = Loop<T, S>> + Unpin, Self: Unpin { type Output = T; fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> { loop { match ready!(Pin::new(&mut self.future).poll(cx)) { Loop::Break(x) => return Poll::Ready(x), Loop::Continue(s) => self.future = (&mut self.func)(s), } } } }