1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//! # IPC Server primitives //! //! The IPC System on horizon is made of Ports pair and Session pairs. Each pair //! has a client and a server side: //! //! - For Ports, the client is used to connect, returning a client Session, //! while the server is used to accept connections, returning a server Session //! - For Sessions, the client is used to send IPC requests, while the server //! is used to receive and reply to those requests. //! //! An IPC Server is made of a [future executor](crate::futures) on which we //! spawn futures to handle Port and Session. Those futures, created through //! [fn port_handler] and [fn new_session_wrapper], will take care of accepting //! new sessions from a ServerPort, and answering IPC requests sent on the //! ServerSession. //! //! ## Port Handling //! //! Most interfaces start with a Port, which is basically an object to which //! clients can connect to, creating a Session pair. Ports can come from two //! places: It can either be kernel-managed, or it can be sm-managed. Almost //! all ports are sm-managed, the only exceptions being `sm:` itself. //! //! Kernel-managed ports are created through the [fn managed_port_handler] //! function. This will internally call [crate::syscalls::manage_named_port()] //! to acquire a [crate::types::ServerPort]. Sm-managed ports are created //! through [fn port_handler], which call //! [crate::sm::IUserInterfaceProxy::register_service()] to acquire their //! ServerPort. //! //! Once the ServerPort is acquired, the port handling functions will run on a //! loop, accepting new connections, creating a backing Object for the sessions, //! and spawning a new future on the event loop with [fn new_session_wrapper]. //! // no_run because port_handler will fail on linux. //! ```no_run //! # extern crate alloc; //! use alloc::boxed::Box; //! use sunrise_libuser::futures::WaitableManager; //! use sunrise_libuser::futures_rs::future::FutureObj; //! use sunrise_libuser::ipc::server::port_handler; //! use sunrise_libuser::example::IExample1; //! //! /// Every time the port accepts a connection and a session is created, it //! /// will spawn a HelloInterface. //! #[derive(Debug, Default, Clone)] //! struct HelloInterface; //! //! impl IExample1 for HelloInterface {} //! //! fn main() { //! let mut man = WaitableManager::new(); //! //! let handler = port_handler(man.work_queue(), "hello", HelloInterface::dispatch).unwrap(); //! man.work_queue().spawn(FutureObj::new(Box::new(handler))); //! //! # let man = FakeMan; //! man.run(); //! } //! # // We can't run the WaitableManager, since that'll attempt to run syscalls //! # // that aren't implemented. //! # struct FakeMan; //! # impl FakeMan { fn run(&self) {} } //! ``` //! //! ## Session Handling //! //! A Session server is represented by an Object implementing an Interface, //! receiving and replying to Remote Process Call (RPC) requests on a //! [crate::types::ServerSession]. A session server is created either through a //! port handler accepting a session, or through the [fn new_session_wrapper] //! function, which will receive requests, call the Object's dispatcher //! function, and reply with the answer. //! //! ### Interfaces //! //! IPC Servers expose an API to a given service to other processes using an RPC //! interface. The interface is defined using a SwIPC id file which can be found //! in the `ipcdefs` folder at the root of the repository. This SwIPC file will //! then get compiled by swipc-gen into a rust file containing a Client struct //! and two Server traits (one being synchronous, the other asynchronous). Those //! will generally be exposed from the `sunrise_libuser` crate. //! //! Those traits contain two elements: //! //! 1. A function for every function in the SwIPC interface, having roughly the //! same signature (but with SwIPC types translated to rust). The user is //! expected to implement all those functions to have a complete interface //! implementation. //! //! 2. A function called `dispatch`. This function will be called by the Session //! Wrapper, and is in charge of parsing the IPC message data to extract all //! the arguments and call the correct function from the trait //! implementation. //! // no_run because port_handler will fail on linux... //! ```no_run //! extern crate alloc; //! //! use alloc::boxed::Box; //! use sunrise_libuser::futures::{WorkQueue, WaitableManager}; //! use sunrise_libuser::futures_rs::future::FutureObj; //! use sunrise_libuser::ipc::server::port_handler; //! use sunrise_libuser::example::IExample2; //! use sunrise_libuser::error::Error; //! use log::*; //! //! #[derive(Debug, Default, Clone)] //! struct HelloInterface; //! //! impl IExample2 for HelloInterface { //! fn function(&mut self, _manager: WorkQueue<'static>) -> Result<(), Error> { //! info!("hello"); //! Ok(()) //! } //! fn function2(&mut self, _manager: WorkQueue<'static>, val1: u32, val2: u32) -> Result<(bool, bool), Error> { //! info!("hello"); //! Ok((false, true)) //! } //! } //! //! fn main() { //! let mut man = WaitableManager::new(); //! //! let handler = port_handler(man.work_queue(), "hello", HelloInterface::dispatch).unwrap(); //! man.work_queue().spawn(FutureObj::new(Box::new(handler))); //! //! # let man = FakeMan; //! //! man.run(); //! } //! # // We can't run the WaitableManager, since that'll attempt to run syscalls //! # // that aren't implemented. //! # struct FakeMan; //! # impl FakeMan { fn run(&self) {} } //! ``` //! //! ### Objects //! //! An Object backs every Session. This object is the structure which implements //! the Interface trait. It contains the state of that specific session, and may //! be mutated by any IPC request. A common pattern is to have an IPC request //! contain an initialization method containing various parameters to configure //! the rest of the operations available on that session. //! //! Note that a single interface may be implemented by multiple different //! Object. This can be used to implement different access control based on the //! interface used to access the service, for instance. Nintendo uses this //! pattern: `bsd:u` and `bsd:s` use the same interface, but have different //! access rights. //! //! ### Subsessions //! //! While the "root" session is generally created from a Port Handler, the user //! is free to create and return new subsessions. This can be done by creating //! a session pair with [crate::syscalls::create_session()], spawning a new //! Session Handler with [fn new_session_wrapper], and returning the client-side //! session handle. Here's an example: //! // no_run because port_handler will fail on linux... //! ```no_run //! extern crate alloc; //! use alloc::boxed::Box; //! use sunrise_libuser::futures::WorkQueue; //! use sunrise_libuser::futures_rs::future::FutureObj; //! use sunrise_libuser::example::{IExample3, IExample3Subsession, IExample3SubsessionProxy}; //! use sunrise_libuser::syscalls; //! use sunrise_libuser::error::Error; //! use sunrise_libuser::ipc::server::new_session_wrapper; //! //! #[derive(Debug, Default, Clone)] //! struct HelloInterface; //! //! impl IExample3 for HelloInterface { //! fn function(&mut self, work_queue: WorkQueue<'static>) -> Result<IExample3SubsessionProxy, Error> { //! let (server, client) = syscalls::create_session(false, 0)?; //! let wrapper = new_session_wrapper(work_queue.clone(), server, Subsession, Subsession::dispatch); //! work_queue.spawn(FutureObj::new(Box::new(wrapper))); //! Ok(IExample3SubsessionProxy::from(client)) //! } //! } //! //! #[derive(Debug, Clone)] //! struct Subsession; //! //! impl IExample3Subsession for Subsession {} //! //! # fn main() { //! # use sunrise_libuser::futures::WaitableManager; //! # use sunrise_libuser::ipc::server::port_handler; //! # let mut man = WaitableManager::new(); //! //! # let handler = port_handler(man.work_queue(), "hello", HelloInterface::dispatch).unwrap(); //! # man.work_queue().spawn(FutureObj::new(Box::new(handler))); //! # } //! ``` //! //! ### Asynchronous Traits //! //! A server might want to wait for asynchronous events to occur before //! answering: for instance, the `read()` function of a filesystem might want //! to wait for an [crate::types::IRQEvent] to get signaled before getting the //! data from the disk and returning it to the client. //! //! This is doable by using the Asynchronous traits. Those return a Future //! instead of directly returning the Result. This has one huge downside: the //! futures need to be Boxed, incuring a needless heap allocation. This should //! get fixed when `impl Trait` in traits or `async fn` in traits is //! implemented. //! //! Here's an example usage: //! // no_run because port_handler will fail on linux. //! ```no_run //! #![feature(async_await)] //! extern crate alloc; //! //! use core::future::Future; //! use alloc::boxed::Box; //! use sunrise_libuser::futures::WorkQueue; //! use sunrise_libuser::futures_rs::future::FutureObj; //! use sunrise_libuser::example::IExample4Async; //! use sunrise_libuser::types::SharedMemory; //! use sunrise_libuser::error::{Error, KernelError}; //! //! #[derive(Debug, Default, Clone)] //! struct HelloInterface; //! //! fn do_async_stuff() -> impl Future<Output=()> + Send { //! futures::future::ready(()) //! } //! //! impl IExample4Async for HelloInterface { //! fn function<'a>(&'a mut self, manager: WorkQueue<'static>, val: &u8) -> FutureObj<'a, Result<SharedMemory, Error>> { //! FutureObj::new(Box::new(async move { //! do_async_stuff().await; //! Err(KernelError::PortRemoteDead.into()) //! })) //! } //! } //! //! # fn main() { //! # use sunrise_libuser::futures::WaitableManager; //! # use sunrise_libuser::ipc::server::port_handler; //! # let mut man = WaitableManager::new(); //! //! # let handler = port_handler(man.work_queue(), "hello", HelloInterface::dispatch).unwrap(); //! # man.work_queue().spawn(FutureObj::new(Box::new(handler))); //! # } //! ``` use crate::syscalls; use crate::types::{ServerPort, ServerSession}; use alloc::boxed::Box; use core::ops::{Deref, DerefMut, Index}; use crate::error::{KernelError, Error}; use crate::ipc::Message; use futures::future::{FutureObj, FutureExt}; use core::future::Future; use crate::futures::WorkQueue; /// Wrapper struct that forces the alignment to 0x10. Somewhat necessary for the /// IPC command buffer. #[repr(C, align(16))] #[derive(Debug)] struct Align16<T>(T); impl<T> Deref for Align16<T> { type Target = T; fn deref(&self) -> &T { &self.0 } } impl<T> DerefMut for Align16<T> { fn deref_mut(&mut self) -> &mut T { &mut self.0 } } impl<T, Idx> Index<Idx> for Align16<T> where T: Index<Idx> { type Output = T::Output; fn index(&self, index: Idx) -> &T::Output { &self.0[index] } } /// Encode an 8-character service string into an u64 fn encode_bytes(s: &str) -> u64 { assert!(s.len() <= 8); let s = s.as_bytes(); 0 | (u64::from(*s.get(0).unwrap_or(&0))) << 00 | (u64::from(*s.get(1).unwrap_or(&0))) << 8 | (u64::from(*s.get(2).unwrap_or(&0))) << 16 | (u64::from(*s.get(3).unwrap_or(&0))) << 24 | (u64::from(*s.get(4).unwrap_or(&0))) << 32 | (u64::from(*s.get(5).unwrap_or(&0))) << 40 | (u64::from(*s.get(6).unwrap_or(&0))) << 48 | (u64::from(*s.get(7).unwrap_or(&0))) << 56 } /// Infinite loop future that waits for `port` to get signaled, then accepts a /// new session on the port, creates a new object backing the session using /// `T::default()`, and finally spawns a new session wrapper future using /// [new_session_wrapper()]. fn common_port_handler<T, DISPATCH>(work_queue: WorkQueue<'static>, port: ServerPort, dispatch: DISPATCH) -> impl Future<Output=()> where DISPATCH: for<'b> hrtb_hack::FutureCallback<(&'b mut T, WorkQueue<'static>, u32, &'b mut [u8]), Result<(), Error>>, DISPATCH: Clone + Unpin + Send + 'static, T: Default + Clone + Unpin + Send + 'static, { crate::loop_future::loop_fn((work_queue, dispatch, port), |(work_queue, dispatch, port)| { port.wait_async(work_queue.clone()) .map(move |res| { if let Err(err) = res { // This instance of WaitAsync can return one of two errors: // - InvalidAddress: Someone did something silly with // memory. // - InvalidHandle: Shouldn't happen since we hold the // ServerPort. Someone might have manually closed it? unreachable!("WaitAsync errors cannot be reached from here. {:?}", err); } let handle = port.accept().unwrap(); let future = new_session_wrapper(work_queue.clone(), handle, T::default(), dispatch.clone()); work_queue.spawn(FutureObj::new(Box::new(future))); crate::loop_future::Loop::Continue((work_queue, dispatch, port)) }) }) } /// Creates a port through [crate::sm::IUserInterfaceProxy::register_service()] /// with the given name, and returns a future which will handle the port - that /// is, it will continuously accept new sessions on the port, and create backing /// objects through `T::default()`, and spawn a top-level future handling that /// sesion with [new_session_wrapper()]. pub fn port_handler<T, DISPATCH>(work_queue: WorkQueue<'static>, server_name: &str, dispatch: DISPATCH) -> Result<impl Future<Output=()>, Error> where DISPATCH: for<'b> hrtb_hack::FutureCallback<(&'b mut T, WorkQueue<'static>, u32, &'b mut [u8]), Result<(), Error>>, DISPATCH: Clone + Unpin + Send + 'static, T: Default + Clone + Unpin + Send + 'static, { use crate::sm::IUserInterfaceProxy; // We use `new()` and not `raw_new()` in order to avoid deadlocking when closing the // IUserInterfaceProxy handle. See implementation note in sm/src/main.rs let port = IUserInterfaceProxy::new()?.register_service(encode_bytes(server_name), false, 0)?; Ok(common_port_handler(work_queue, port, dispatch)) } /// Creates a port through [syscalls::manage_named_port()] with the given name, /// and returns a future which will handle the port - that is, it /// will continuously accept new sessions on the port, and create backing /// objects through `T::default()`, and spawn a top-level future handling that /// sesion with [new_session_wrapper()]. pub fn managed_port_handler<T, DISPATCH>(work_queue: WorkQueue<'static>, server_name: &str, dispatch: DISPATCH) -> Result<impl Future<Output=()>, Error> where DISPATCH: for<'b> hrtb_hack::FutureCallback<(&'b mut T, WorkQueue<'static>, u32, &'b mut [u8]), Result<(), Error>>, DISPATCH: Clone + Unpin + Send + 'static, T: Default + Clone + Unpin + Send + 'static, { let port = syscalls::manage_named_port(server_name, 0)?; Ok(common_port_handler(work_queue, port, dispatch)) } pub mod hrtb_hack { //! Ideally, that's what we would want to write //! async fn new_session_wrapper<F>(mut dispatch: F) -> () //! where //! F: for<'a> FnMut<(&'a mut [u8],)>, //! for<'a> <F as FnOnce<(&'a mut [u8],)>>::Output: Future<Output = Result<(), ()>>, //! { //! // Session wrapper code //! } // //! But the compiler seems to have trouble reasoning about associated types //! in an HRTB context (maybe that's just not possible ? Not sure). //! //! To work around this, we'll make a supertrait over `FnMut<T>` and make //! use of lifetime ellision rules to get this done. //! So instead, we'll make a wrapper for `FnMut` that has the right trait bound //! on its associated output type directly, Implement it for all FnMut with //! Ret = Output, and use that as a bound instead. use core::future::Future; /// A similar trait to FnMut() but moving the Ret associated trait to a /// generic position, simplifying stuff. See module docs. pub trait FutureCallback<T, O>: FnMut<T> { /// See [type FnMut::Output] type Ret: Future<Output = O> + Send; /// See [FnMut::call_mut()]. fn call(&mut self, x: T) -> Self::Ret; } impl<T, O, F: FnMut<T>> FutureCallback<T, O> for F where F::Output: Future<Output = O> + Send, { type Ret = F::Output; fn call(&mut self, x: T) -> Self::Ret { self.call_mut(x) } } } /// Creates a new top-level future that handles session. /// /// The returned future will continuously accept new incoming requests on the /// handle, call the dispatch function with the given object, and the request' /// cmdid and buffer, and finally reply to the request. /// /// It may be used to open subsessions. pub fn new_session_wrapper<T, DISPATCH>(work_queue: WorkQueue<'static>, handle: ServerSession, mut object: T, mut dispatch: DISPATCH) -> impl Future<Output = ()> + Send where DISPATCH: for<'b> hrtb_hack::FutureCallback<(&'b mut T, WorkQueue<'static>, u32, &'b mut [u8]), Result<(), Error>>, DISPATCH: Unpin + Send + Clone + 'static, T: Unpin + Send + Clone + 'static, { let mut buf = Align16([0; 0x100]); let mut pointer_buf = [0; 0x400]; async move { loop { debug!("Waiting for a new session on handle {:?}", handle); let res = handle.wait_async(work_queue.clone()).await; if let Err(err) = res { // This instance of WaitAsync can return one of two errors: // - InvalidAddress: Someone did something silly with // memory. // - InvalidHandle: Shouldn't happen since we hold the // ServerPort. Someone might have manually closed it? unreachable!("WaitAsync errors cannot be reached from here. {:?}", err); } // Push a C Buffer before receiving. let mut req = Message::<(), [_; 1], [_; 0], [_; 0]>::new_request(None, 0); req.push_in_pointer(&mut pointer_buf, false); req.pack(&mut buf[..]); // Use a timeout of 0 to avoid blocking. match handle.receive(&mut buf[..], Some(0)) { Err(Error::Kernel(KernelError::Timeout, _)) => continue, res => res.unwrap(), } let tycmdid = super::find_ty_cmdid(&buf[..]); debug!("Got request for: {:?}", tycmdid); let close = match tycmdid { Some((4, cmdid)) | Some((6, cmdid)) => dispatch.call((&mut object, work_queue.clone(), cmdid, &mut buf[..])).await .map(|_| false) .unwrap_or_else(|err| { error!("Dispatch method errored out: {:?}", err); true }), Some((2, _)) => true, Some((5, cmdid)) | Some((7, cmdid)) => control_dispatch(&mut object, dispatch.clone(), work_queue.clone(), cmdid, &mut buf[..]) .map(|_| false) .unwrap_or_else(|err| { error!("Dispatch method errored out: {:?}", err); true }), _ => true, }; if close { break; } handle.reply(&mut buf[..]).unwrap(); } } } /// Implement the Control ipc cmd types. /// /// See [switchbrew](https://switchbrew.org/w/index.php?title=IPC_Marshalling#Control) fn control_dispatch<T, DISPATCH>(object: &mut T, dispatch: DISPATCH, manager: WorkQueue<'static>, cmdid: u32, buf: &mut [u8]) -> Result<(), Error> where DISPATCH: for<'b> hrtb_hack::FutureCallback<(&'b mut T, WorkQueue<'static>, u32, &'b mut [u8]), Result<(), Error>>, DISPATCH: Unpin + Send + Clone + 'static, T: Unpin + Send + Clone + 'static { match cmdid { 2 | 4 => { let (server, client) = syscalls::create_session(false, 0)?; let new_object = object.clone(); let future = new_session_wrapper(manager.clone(), server, new_object, dispatch); manager.spawn(FutureObj::new(Box::new(future))); let mut msg__ = Message::<(), [_; 0], [_; 0], [_; 1]>::new_response(None); msg__.push_handle_move(client.into_handle()); msg__.pack(buf); Ok(()) }, _ => { let mut msg__ = Message::<(), [_; 0], [_; 0], [_; 0]>::new_response(None); msg__.set_error(KernelError::PortRemoteDead.make_ret() as u32); msg__.pack(buf); Ok(()) } } }