1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
//! # Core IPC Routines //! //! Horizon/OS is a microkernel. And what would be a microkernel without an //! appropriately overengineered IPC layer? The IPC layer of Horizon/NX is split //! in two parts: Cmif and Hipc. Cmif is the low-level IPC layer implemented by //! the kernel. Its job is to move handles from the sender to the receiver, move //! buffers using the appropriate method, and copy the data section over. //! //! The Hipc layer is responsible for the format of the Raw data section. It //! expects the SFCI/SFCO header, the cmdid at a certain location, and handles //! domains. //! //! In libuser, we don't make a proper distinction between Cmif and Hipc. Both //! are implemented in the same layer, which is backed by the Message structure. use core::convert::TryInto; use core::marker::PhantomData; use core::mem; use core::convert::TryFrom; use byteorder::LE; use arrayvec::{ArrayVec, Array}; use crate::utils::{self, align_up, CursorWrite, CursorRead}; use crate::types::{Handle, HandleRef, Pid}; use bit_field::BitField; use crate::error::{Error, LibuserError}; pub mod server; bitfield! { /// Represenens the header of an HIPC command. /// /// The kernel uses this header to figure out how to send the IPC message. #[repr(transparent)] pub struct MsgPackedHdr(u64); impl Debug; u16, ty, set_ty: 15, 0; u8, num_x_descriptors, set_num_x_descriptors: 19, 16; u8, num_a_descriptors, set_num_a_descriptors: 23, 20; u8, num_b_descriptors, set_num_b_descriptors: 27, 24; u8, num_w_descriptors, set_num_w_descriptors: 31, 28; u16, raw_section_size, set_raw_section_size: 41, 32; u8, c_descriptor_flags, set_c_descriptor_flags: 45, 42; enable_handle_descriptor, set_enable_handle_descriptor: 63; } bitfield! { /// Part of an HIPC command. Sent only when /// `MsgPackedHdr::enable_handle_descriptor` is true. #[repr(transparent)] pub struct HandleDescriptorHeader(u32); impl Debug; send_pid, set_send_pid: 0; u8, num_copy_handles, set_num_copy_handles: 4, 1; u8, num_move_handles, set_num_move_handles: 8, 5; } /// Type of an IPC Buffer. Depending on the type, the kernel will either map it /// in the remote process, or memcpy its content. #[derive(Debug, Clone, Copy)] pub enum IPCBufferType { /// Send Buffer. A { // TODO: Type-safe IPCBufferType flags. // BODY: Currently, IPCBufferType flags are encoded on an u8. However, it // BODY: can only have one of three values: 0, 1 and 3. We should // BODY: represent it as an enum or enum_with_val instead. /// Determines what MemoryState to use with the mapped memory in the /// sysmodule. Used to enforce whether or not device mapping is allowed /// for src and dst buffers respectively. /// /// - 0: Device mapping *not* allowed for src or dst. /// - 1: Device mapping allowed for src and dst. /// - 3: Device mapping allowed for src but not for dst. flags: u8 }, /// Receive Buffer. B { /// Determines what MemoryState to use with the mapped memory in the /// sysmodule. Used to enforce whether or not device mapping is allowed /// for src and dst buffers respectively. /// /// - 0: Device mapping *not* allowed for src or dst. /// - 1: Device mapping allowed for src and dst. /// - 3: Device mapping allowed for src but not for dst. flags: u8 }, /// SendReceive Buffer. W { /// Determines what MemoryState to use with the mapped memory in the /// sysmodule. Used to enforce whether or not device mapping is allowed /// for src and dst buffers respectively. /// /// - 0: Device mapping *not* allowed for src or dst. /// - 1: Device mapping allowed for src and dst. /// - 3: Device mapping allowed for src but not for dst. flags: u8 }, /// Pointer. X { /// The index of the C buffer to copy this pointer into. counter: u8 }, /// Receive List. C { /// If true, the size of the receive list should be written in the /// request raw data. has_u16_size: bool }, } impl IPCBufferType { /// Checks if this buffer is a Send Buffer. fn is_type_a(self) -> bool { if let IPCBufferType::A { .. } = self { true } else { false } } /// Checks if this buffer is a Receive Buffer. fn is_type_b(self) -> bool { if let IPCBufferType::B { .. } = self { true } else { false } } /// Checks if this buffer is a SendReceive Buffer. fn is_type_w(self) -> bool { if let IPCBufferType::W { .. } = self { true } else { false } } /// Checks if this buffer is a Pointer Buffer. fn is_type_x(self) -> bool { if let IPCBufferType::X { .. } = self { true } else { false } } } /// An IPC Buffer represents a section of memory to send to the other side of the /// pipe. It is usually used for sending big chunks of data that would not send /// in the comparatively small argument area (which is usually around 200 bytes). /// /// There exists 5 types of IPC Buffers: Send(A), Receive(B), SendReceive(W), /// Pointer(X) and ReceiveList(C). /// /// Send/Receive/SendReceive buffers work by remapping the memory from the /// sender's process into the receiver's process. This means that they need to /// have a page-aligned address and size. /// /// In contrast, Pointer/ReceiveList buffers work by memcpying the sender's /// Pointer buffer into the receiver's ReceiveList buffer. This allows greater /// flexibility on the address and size. In general, those are prefered. #[derive(Debug, Clone)] pub struct IPCBuffer<'a> { /// Address to the value addr: u64, /// Size of the value size: u64, /// Buffer type ty: IPCBufferType, /// Tie the buffer's lifetime to the value's ! /// This is very very very important, for the safety of this interface. It ensures that, as long as /// this IPCBuffer exist, the value it references cannot be dropped. phantom: PhantomData<&'a ()> } /// Util used for IPC buffer sizing. pub trait SizedIPCBuffer { /// Return the size of the type. fn size(&self) -> usize; /// Check if the address and size are correct. fn is_cool(addr: usize, size: usize) -> bool; /// Create a reference to a ipc buffer from an address and a byte size. /// /// # Safety /// /// [See slice::from_raw_parts](https://doc.rust-lang.org/std/slice/fn.from_raw_parts.html) unsafe fn from_raw_parts<'a>(addr: usize, size: usize) -> &'a Self; /// Create a mutable reference to a ipc buffer from an address and a byte /// size. /// /// # Safety /// /// [See slice::from_raw_parts_mut](https://doc.rust-lang.org/std/slice/fn.from_raw_parts_mut.html) unsafe fn from_raw_parts_mut<'a>(addr: usize, size: usize) -> &'a mut Self; } impl<T> SizedIPCBuffer for T { fn size(&self) -> usize { core::mem::size_of::<T>() } fn is_cool(addr: usize, size: usize) -> bool { size == core::mem::size_of::<T>() && (addr % core::mem::align_of::<T>()) == 0 } unsafe fn from_raw_parts<'a>(addr: usize, _size: usize) -> &'a Self { (addr as *const T).as_ref().unwrap() } unsafe fn from_raw_parts_mut<'a>(addr: usize, _size: usize) -> &'a mut Self { (addr as *mut T).as_mut().unwrap() } } impl<T> SizedIPCBuffer for [T] { fn size(&self) -> usize { core::mem::size_of::<T>() * self.len() } fn is_cool(addr: usize, size: usize) -> bool { size % core::mem::size_of::<T>() == 0 && (addr % core::mem::align_of::<T>()) == 0 } unsafe fn from_raw_parts<'a>(addr: usize, size: usize) -> &'a Self { core::slice::from_raw_parts(addr as *const T, size / core::mem::size_of::<T>()) } unsafe fn from_raw_parts_mut<'a>(addr: usize, size: usize) -> &'a mut Self { core::slice::from_raw_parts_mut(addr as *mut T, size / core::mem::size_of::<T>()) } } impl<'a> IPCBuffer<'a> { /// Creates a Type-A IPCBuffer from the given reference. fn out_buffer<T: SizedIPCBuffer + ?Sized>(data: &T, flags: u8) -> IPCBuffer { IPCBuffer { addr: data as *const T as *const u8 as usize as u64, // The dereference is necessary because &T implements SizedIPCBuffer too... size: (*data).size() as u64, ty: IPCBufferType::A { flags }, phantom: PhantomData } } /// Creates a Type-B IPCBuffer from the given reference. fn in_buffer<T: SizedIPCBuffer + ?Sized>(data: &mut T, flags: u8) -> IPCBuffer { IPCBuffer { addr: data as *mut T as *const u8 as usize as u64, // The dereference is necessary because &T implements SizedIPCBuffer too... size: (*data).size() as u64, ty: IPCBufferType::B { flags }, phantom: PhantomData } } /// Creates a Type-C IPCBuffer from the given reference. /// /// If has_u16_size is true, the size of the pointer will be written after /// the raw data. This is only used when sending client-sized arrays. fn in_pointer<T: SizedIPCBuffer + ?Sized>(data: &mut T, has_u16_size: bool) -> IPCBuffer { IPCBuffer { addr: data as *mut T as *const u8 as usize as u64, // The dereference is necessary because &T implements SizedIPCBuffer too... size: (*data).size() as u64, ty: IPCBufferType::C { has_u16_size }, phantom: PhantomData } } /// Creates a Type-X IPCBuffer from the given reference. /// /// The counter defines which type-C buffer this should be copied into. fn out_pointer<T: SizedIPCBuffer + ?Sized>(data: &T, counter: u8) -> IPCBuffer { IPCBuffer { addr: data as *const T as *const u8 as usize as u64, // The dereference is necessary because &T implements SizedIPCBuffer too... size: (*data).size() as u64, ty: IPCBufferType::X { counter }, phantom: PhantomData } } // Based on http://switchbrew.org/index.php?title=IPC_Marshalling#Official_marshalling_code /// Gets the [IPCBufferType] of this buffer. The buffer type determines how /// the buffer is passed to the other process and if it's an argument or a /// return value. fn buftype(&self) -> IPCBufferType { self.ty } } /// Type of an IPC message. #[derive(Debug)] pub enum MessageTy { /// Requests the other end to close the handle and any resource associated /// with it. Normally called when dropping the ClientSession. Close, /// A normal request. Request, /// A request handled by the server handler. See [switchbrew] for information /// on which functions can be called. /// /// [switchbrew]: https://switchbrew.org/w/index.php?title=IPC_Marshalling#Control Control, } /// A generic IPC message, representing either an IPC Request or an IPC Response. /// /// In order to ensure performance, the request lives entirely on the stack, no /// heap allocation is done. However, if we allowed the maximum sizes for /// everything, this structure would be over-sized, spanning a page. In order to /// avoid this, we allow the user to set the size of the various parameters they /// need. /// /// When sending a request that needs to send a COPY handle, the user is expected /// to create a message specifying the COPY count through the type argument, /// e.g. /// /// ``` /// use sunrise_libuser::ipc::Message; /// let msg = Message::<(), [_; 0], [_; 1], [_; 0]>::new_request(None, 1); /// ``` /// /// The ugly syntax, while unfortunate, is a necessary evil until const generics /// happen. #[derive(Debug)] pub struct Message<'a, RAW, BUFF = [IPCBuffer<'a>; 0], COPY = [u32; 0], MOVE = [u32; 0]> where BUFF: Array<Item=IPCBuffer<'a>>, COPY: Array<Item=u32>, MOVE: Array<Item=u32>, RAW: Copy, { /// Type of the message. This is derived from [MessageTy] and /// [Message::token]. ty: u16, /// Optional PID included in the message. For outgoing messages, the actual /// value is not relevant, as the kernel will replace it with the sender's /// pid. pid: Option<u64>, /// Array of IPC Buffers included in the message. /// /// The user may configure the size of this array in the type, allowing /// precise control over the size of the Message type. buffers: ArrayVec<BUFF>, /// Array of copy handles included in the message. Copy handles are copied /// from the sender's process into the receiver's process. The sender and /// receiver may both use their respective handles. /// /// The user may configure the size of this array in the type, allowing /// precise control over the size of the Message type. copy_handles: ArrayVec<COPY>, /// Array of move handles included in the message. Move handles are moved /// from the sender's process into the receiver's process. The sender loses /// control over the handle, as if it had been closed. /// /// The user may configure the size of this array in the type, allowing /// precise control over the size of the Message type. move_handles: ArrayVec<MOVE>, /// Whether this message contains an IPC request or an IPC response. is_request: bool, /// Contains either the cmdid (if this message is a request) or an error /// number (if this message is a response). cmdid_error: u32, /// Optional tracking token. This is used to track the origin of each IPC /// call. Generally, the creating application will chose a random token when /// doing its request. Services will then use that token when they need to /// make their own requests. token: Option<u32>, /// The raw arguments included in this message. raw: Option<RAW> } impl<'a, RAW, BUFF, COPY, MOVE> Message<'a, RAW, BUFF, COPY, MOVE> where BUFF: Array<Item=IPCBuffer<'a>>, COPY: Array<Item=u32>, MOVE: Array<Item=u32>, RAW: Copy { /// Create a new request for the given cmdid. If a token is passed, the new /// IPC version will be used. The tokens allow for tracking an IPC request /// chain. The raw data will contain the default value, and all arrays will /// be empty. pub fn new_request(token: Option<u32>, cmdid: u32) -> Message<'a, RAW, BUFF, COPY, MOVE> { Message { ty: token.map(|_| 6).unwrap_or(4), pid: None, buffers: ArrayVec::new(), copy_handles: ArrayVec::new(), move_handles: ArrayVec::new(), is_request: true, cmdid_error: cmdid, token: token, raw: None } } /// Create a new empty reply. If the request this reply is created for had a /// token, it should be passed here. The raw data will contain the default /// value, and all arrays will be empty. pub fn new_response(token: Option<u32>) -> Message<'a, RAW, BUFF, COPY, MOVE> { Message { ty: token.map(|_| 6).unwrap_or(4), pid: None, buffers: ArrayVec::new(), copy_handles: ArrayVec::new(), move_handles: ArrayVec::new(), is_request: false, cmdid_error: 0, token: token, raw: None } } /// Sets the message type. pub fn set_ty(&mut self, ty: MessageTy) -> &mut Self { match (ty, self.token) { (MessageTy::Close, _) => self.ty = 2, (MessageTy::Request, Some(_)) => self.ty = 4, (MessageTy::Request, None) => self.ty = 6, (MessageTy::Control, Some(_)) => self.ty = 5, (MessageTy::Control, None) => self.ty = 7, } self } /// Set the error code from a reply. /// /// # Panics /// /// Panics if the message is a request. pub fn set_error(&mut self, err: u32) -> &mut Self { assert!(!self.is_request, "Attempted to set the error of a request. This operation is only valid for replies."); self.cmdid_error = err; self } /// Get the error code from a reply. /// /// # Panics /// /// Panics if the message is a request. pub fn error(&self) -> Result<(), Error> { assert!(!self.is_request, "Attempted to get the error of a request. This operation is only valid for replies."); if self.cmdid_error == 0 { Ok(()) } else { Err(Error::from_code(self.cmdid_error)) } } /// Sets the raw data of the message. pub fn push_raw(&mut self, raw: RAW) -> &mut Self { self.raw = Some(raw); self } /// Gets the raw data of the message. pub fn raw(&self) -> RAW { self.raw.unwrap() } /// Gets the token of a message. This token is used to track IPC call chains. /// Only present on newer IPC request types. pub fn token(&self) -> Option<u32> { self.token } // TODO: IPC Message::push_move_handle might cause handle leak // BODY: The push_move_handle function immediately downcasts the handle to // BODY: a mere int, and forgets the (droppable) handle. This might cause a // BODY: leak if the underlying IPC message is not sent. It'd be better to // BODY: keep the handle around as long as possible. In fact, closing the // BODY: handle after it's been moved might not be such a bad idea. After // BODY: all, handles are guaranteed not to get reused. /// Move a handle over IPC. Once the message is sent, the handle will not /// exist in the current process anymore. /// /// # Note /// /// The handle is forgotten as soon as this function is called. If the /// message is never sent, then the handle will never be closed, causing a /// handle leak! Furthermore, IPC errors might cause similar problems. /// /// # Panics /// /// Panics if attempting to push more handles than there is space for in this /// message. pub fn push_handle_move(&mut self, handle: Handle) -> &mut Self { self.move_handles.push(handle.0.get()); mem::forget(handle); self } /// Copy a handle over IPC. The remote process will have a handle that points /// to the same object. /// /// # Panics /// /// Panics if attempting to push more handles than there is space for in this /// message. pub fn push_handle_copy(&mut self, handle: HandleRef<'_>) -> &mut Self { self.copy_handles.push(handle.inner.get()); self } /// Retrieve a moved handle from this IPC message. Those are popped in the /// order they were inserted. /// /// # Errors /// /// Returns an InvalidMoveHandleCount if attempting to pop more handles than /// this message has. pub fn pop_handle_move(&mut self) -> Result<Handle, Error> { self.move_handles.pop_at(0) .map(Handle::new) .ok_or_else(|| LibuserError::InvalidMoveHandleCount.into()) } /// Retrieve a copied handle from this IPC message. Those are popped in the /// order they were inserted. /// /// # Errors /// /// Returns an InvalidCopyHandleCount if attempting to pop more handles than /// this message has. pub fn pop_handle_copy(&mut self) -> Result<Handle, Error> { self.copy_handles.pop_at(0) .map(Handle::new) .ok_or_else(|| LibuserError::InvalidCopyHandleCount.into()) } /// Retrieve the PID of the remote process (if sent at all). This message /// should only be called once. /// /// # Errors /// /// Returns a PidMissing if attempting to pop a Pid from a message that has /// none, or if attempting to pop a Pid twice. pub fn pop_pid(&mut self) -> Result<Pid, Error> { self.pid.take() .map(Pid) .ok_or_else(|| LibuserError::PidMissing.into()) } /// Retreive the next InBuffer (type-A buffer) in the message. /// /// # Errors /// /// Returns an InvalidIpcBufferCount if not enough buffers are present /// /// Returns an InvalidIpcBuffer if the next buffer was not of the appropriate /// size. /// /// # Safety /// /// This method is unsafe as it allows creating references to arbitrary /// memory, and of arbitrary type. pub unsafe fn pop_in_buffer<'b, T: SizedIPCBuffer + ?Sized>(&mut self) -> Result<&'b T, Error> { let buffer = self.buffers.iter().position(|buf| buf.buftype().is_type_a()) .and_then(|pos| self.buffers.pop_at(pos)) .ok_or_else(|| LibuserError::InvalidIpcBufferCount)?; let addr = usize::try_from(buffer.addr).map_err(|_| LibuserError::InvalidIpcBuffer)?; let size = usize::try_from(buffer.size).map_err(|_| LibuserError::InvalidIpcBuffer)?; if T::is_cool(addr, size) { Ok(T::from_raw_parts(addr, size)) } else { Err(LibuserError::InvalidIpcBuffer.into()) } } /// Retreive the next OutBuffer (type-B buffer) in the message. /// /// # Errors /// /// Returns an InvalidIpcBufferCount if not enough buffers are present /// /// Returns an InvalidIpcBuffer if the next buffer was not of the appropriate /// size. /// /// # Safety /// /// This method is unsafe as it allows creating references to arbitrary /// memory, and of arbitrary type. pub unsafe fn pop_out_buffer<'b, T: SizedIPCBuffer + ?Sized>(&mut self) -> Result<&'b mut T, Error> { let buffer = self.buffers.iter().position(|buf| buf.buftype().is_type_b()) .and_then(|pos| self.buffers.pop_at(pos)) .ok_or_else(|| LibuserError::InvalidIpcBufferCount)?; let addr = usize::try_from(buffer.addr).map_err(|_| LibuserError::InvalidIpcBuffer)?; let size = usize::try_from(buffer.size).map_err(|_| LibuserError::InvalidIpcBuffer)?; if T::is_cool(addr, size) { Ok(T::from_raw_parts_mut(addr, size)) } else { Err(LibuserError::InvalidIpcBuffer.into()) } } /// Push an OutBuffer (type-A buffer) backed by the specified data. pub fn push_out_buffer<T: SizedIPCBuffer + ?Sized>(&mut self, data: &'a T) -> &mut Self { self.buffers.push(IPCBuffer::out_buffer(data, 0)); self } /// Push an InBuffer (type-B buffer) backed by the specified data. pub fn push_in_buffer<T: SizedIPCBuffer + ?Sized>(&mut self, data: &'a mut T) -> &mut Self { self.buffers.push(IPCBuffer::in_buffer(data, 0)); self } /// Push an InPointer (type-C buffer) backed by the specified data. /// /// If `has_u16_count` is true, the size of the X buffer will be appended /// to the Raw Data. See Buffer 0xA on the IPC Marshalling page of /// switchbrew. pub fn push_in_pointer<T: SizedIPCBuffer + ?Sized>(&mut self, data: &'a mut T, has_u16_count: bool) -> &mut Self { self.buffers.push(IPCBuffer::in_pointer(data, has_u16_count)); self } /// Push an OutPointer (type-X buffer) backed by the specified data. /// /// If `has_u16_count` is true, the size of the X buffer will be appended /// to the Raw Data. See Buffer 0xA on the IPC Marshalling page of /// switchbrew. pub fn push_out_pointer<T: SizedIPCBuffer + ?Sized>(&mut self, data: &'a T) -> &mut Self { let index = self.buffers.iter().filter(|buf| buf.buftype().is_type_x()).count(); self.buffers.push(IPCBuffer::out_pointer(data, index as u8)); self } /// Send a Pid with this IPC request. /// /// If `pid` is None, sends the current process' Pid. If it's Some, then it /// will attempt to send that process Pid. Note however that this requires a /// kernel patch to work properly. pub fn send_pid(&mut self, pid: Option<Pid>) -> &mut Self { self.pid = Some(pid.map(|v| v.0).unwrap_or(0)); self } /// Retreive the next InPointer (type-X buffer) in the message. /// /// # Errors /// /// Returns an InvalidIpcBufferCount if not enough buffers are present /// /// Returns an InvalidIpcBuffer if the next buffer was not of the appropriate /// size. /// /// # Safety /// /// This method is unsafe as it allows creating references to arbitrary /// memory, and of arbitrary type. pub unsafe fn pop_in_pointer<'b, T: SizedIPCBuffer + ?Sized>(&mut self) -> Result<&'b T, Error> { let buffer = self.buffers.iter().position(|buf| buf.buftype().is_type_x()) .and_then(|pos| self.buffers.pop_at(pos)) .ok_or_else(|| LibuserError::InvalidIpcBufferCount)?; let addr = usize::try_from(buffer.addr).map_err(|_| LibuserError::InvalidIpcBuffer)?; let size = usize::try_from(buffer.size).map_err(|_| LibuserError::InvalidIpcBuffer)?; if T::is_cool(addr, size) { Ok(T::from_raw_parts(addr, size)) } else { Err(LibuserError::InvalidIpcBuffer.into()) } } // TODO: Move pack to a non-generic function // BODY: Right now the pack and unpack functions are duplicated for every // BODY: instanciation of Message. This probably has a huge penalty on // BODY: codesize. We should make a function taking everything as slices // BODY: instead /// Packs this IPC Message to an IPC buffer. pub fn pack(self, data: &mut [u8]) { let ( mut descriptor_count_x, mut descriptor_count_a, mut descriptor_count_b, mut descriptor_count_w, mut descriptor_count_c) = (/* X */0, /* A */0, /* B */0, /* W */0, /* C */0); for bufty in self.buffers.iter().map(|b| b.buftype()) { match bufty { IPCBufferType::X { .. } => descriptor_count_x += 1u8, IPCBufferType::A { .. } => descriptor_count_a += 1u8, IPCBufferType::B { .. } => descriptor_count_b += 1u8, IPCBufferType::W { .. } => descriptor_count_w += 1u8, IPCBufferType::C { .. } => descriptor_count_c += 1u8, } } let mut cursor = CursorWrite::new(data); // Get the header. { let mut hdr = MsgPackedHdr(0); hdr.set_ty(self.ty); hdr.set_num_x_descriptors(descriptor_count_x); hdr.set_num_a_descriptors(descriptor_count_a); hdr.set_num_b_descriptors(descriptor_count_b); hdr.set_num_w_descriptors(descriptor_count_w); if descriptor_count_c == 0 { hdr.set_c_descriptor_flags(0); } else if descriptor_count_c == 1 { hdr.set_c_descriptor_flags(2); } else { hdr.set_c_descriptor_flags(2 + descriptor_count_c); } // 0x10 = padding, 8 = sfci, 8 = cmdid, data = T let raw_section_size = 0x10 + 8 + 8 + mem::size_of::<RAW>() + //domain_id.map(|v| 0x10).unwrap_or(0) + (self.buffers.iter().filter(|v| if let IPCBufferType::C { has_u16_size: true } = v.ty { true } else { false }).count() * 2); // TODO: IPC Domain Support // BODY: IPC Domains would be nice to include back. MegatonHammer has // BODY: the IPC request side of things, but I'm not too sure how to // BODY: implement the server side. /*if domain_id.is_some() { // Domain Header. raw_section_size += 0x10; }*/ // C descriptor u16 sizes hdr.set_raw_section_size(utils::div_ceil(raw_section_size, 4) as u16); let enable_handle_descriptor = self.copy_handles.len() > 0 || self.move_handles.len() > 0 || self.pid.is_some(); hdr.set_enable_handle_descriptor(enable_handle_descriptor); cursor.write_u64::<LE>(hdr.0); } // First, write the handle descriptor if self.copy_handles.len() > 0 || self.move_handles.len() > 0 || self.pid.is_some() { // Handle Descriptor Header { let mut descriptor_hdr = HandleDescriptorHeader(0); // Write the header descriptor_hdr.set_num_copy_handles(self.copy_handles.len() as u8); descriptor_hdr.set_num_move_handles(self.move_handles.len() as u8); descriptor_hdr.set_send_pid(self.pid.is_some()); cursor.write_u32::<LE>(descriptor_hdr.0); } // Seek 8 if we have to send pid. Write the PID, useful if we want // to pretend to be another process (requires a kernel patch). if let Some(pid) = self.pid { cursor.write_u64::<LE>(pid); } // Write copy and move handles for hnd in self.copy_handles { cursor.write_u32::<LE>(hnd); } for hnd in self.move_handles { cursor.write_u32::<LE>(hnd); } } // X descriptors { for buf in self.buffers.iter() { let (addr, size, counter) = match buf.buftype() { IPCBufferType::X { counter } => (buf.addr, buf.size, counter), _ => continue }; assert!(addr >> 39 == 0, "Invalid buffer address"); assert!(size >> 16 == 0, "Invalid buffer size"); assert!(counter & !0b1111 == 0, "Invalid counter"); let num = *u32::from(counter.get_bits(0..4)) .set_bits(6..9, addr.get_bits(36..39) as u32) .set_bits(12..16, addr.get_bits(32..36) as u32) .set_bits(16..32, size as u32); cursor.write_u32::<LE>(num); cursor.write_u32::<LE>((addr & 0xFFFFFFFF) as u32); } } /// Pack a list of A, B or W descriptor in the buffer at the position of /// the cursor. fn pack_abw_descriptors<'a, I: Iterator<Item = &'a IPCBuffer<'a>>>(cursor: &mut CursorWrite, buffers: I) { for buf in buffers { let (addr, size, flags) = match buf.buftype() { IPCBufferType::A {flags} => (buf.addr, buf.size, flags), IPCBufferType::B {flags} => (buf.addr, buf.size, flags), _ => unreachable!() }; assert!(addr >> 39 == 0, "Invalid buffer address"); assert!(size >> 35 == 0, "Invalid buffer size"); cursor.write_u32::<LE>((size & 0xFFFFFFFF) as u32); cursor.write_u32::<LE>((addr & 0xFFFFFFFF) as u32); let num = u64::from(flags) | ((addr >> 36) & 0b111) << 2 | ((size >> 32) & 0b1111) << 24 | ((addr >> 32) & 0b1111) << 28; cursor.write_u32::<LE>(num as u32); } } // A descriptors pack_abw_descriptors(&mut cursor, self.buffers.iter().filter(|buf| buf.buftype().is_type_a())); // B descriptors pack_abw_descriptors(&mut cursor, self.buffers.iter().filter(|buf| buf.buftype().is_type_b())); // W descriptors // Those are read-write descriptors. Technically speaking, a B descriptor is supposed // to be write-only. But Nintendo sucks. pack_abw_descriptors(&mut cursor, self.buffers.iter().filter(|buf| buf.buftype().is_type_w())); // Align to 16-byte boundary let before_pad = align_up(cursor.pos(), 16) - cursor.pos(); cursor.skip_write(before_pad); // Domains /*if let Some(obj) = domain_id { { let hdr = cursor.skip_write(mem::size_of::<DomainMessageHeader>()); let hdr = unsafe { (hdr.as_mut_ptr() as *mut DomainMessageHeader).as_mut().unwrap() }; hdr.set_command(1); hdr.set_input_object_count(0); hdr.set_data_len(mem::size_of::<RAW>() as u16 + 0x10); } cursor.write_u32::<LE>(obj); // Apparently this is some padding. :shrug: cursor.write_u64::<LE>(0); }*/ if self.is_request { cursor.write(b"SFCI"); } else { cursor.write(b"SFCO"); } // If we have a token, use command version 1. Otherwise, send version 0. cursor.write_u32::<LE>(self.token.map(|_| 1).unwrap_or(0)); cursor.write_u32::<LE>(self.cmdid_error); // Send the token if we have one, or zero. cursor.write_u32::<LE>(self.token.unwrap_or(0)); if let Some(raw) = self.raw { cursor.write_raw(raw); } // Write input object IDs. For now: none. // Total padding should be 0x10 cursor.skip_write(0x10 - before_pad); // C descriptor u16 length list let mut i = 0; for buf in self.buffers.iter() { let buf = match buf.buftype() { IPCBufferType::C { has_u16_size: true } => buf, _ => continue }; if buf.size >> 16 != 0 { panic!("Invalid buffer size {:x}", buf.size); } cursor.write_u16::<LE>((buf.size) as u16); i += 1; } // Align to u32 if i % 2 == 1 { cursor.skip_write(2); } for buf in self.buffers.iter() { let buf = match buf.buftype() { IPCBufferType::C { .. } => buf, _ => continue }; assert_eq!(buf.addr >> 48, 0, "Invalid address {:x}", buf.addr); assert_eq!(buf.size >> 16, 0, "Invalid size {:x}", buf.size); cursor.write_u32::<LE>(buf.addr as u32); cursor.write_u32::<LE>((buf.addr >> 32) as u32 | (buf.size as u32) << 16); } } // TODO: Don't panic here! Unpacking happens in the server, we should return an // error if the unpacking failed. /// Parse the passed buffer into an IPC Message. pub fn unpack(data: &[u8]) -> Message<'a, RAW, BUFF, COPY, MOVE> { let cursor = CursorRead::new(data); let hdr = MsgPackedHdr(cursor.read_u64::<LE>()); let ty = hdr.ty(); let mut pid = None; let mut copy_handles = ArrayVec::new(); let mut move_handles = ArrayVec::new(); let mut buffers = ArrayVec::new(); // First, read the handle descriptor if hdr.enable_handle_descriptor() { let descriptor_hdr = HandleDescriptorHeader(cursor.read_u32::<LE>()); if descriptor_hdr.send_pid() { pid = Some(cursor.read_u64::<LE>()); } for _ in 0..descriptor_hdr.num_copy_handles() { copy_handles.push(cursor.read_u32::<LE>()); } for _ in 0..descriptor_hdr.num_move_handles() { move_handles.push(cursor.read_u32::<LE>()); } } // Then take care of the buffers for _ in 0..hdr.num_x_descriptors() { // skip 2 words let stuffed = cursor.read_u32::<LE>(); let laddr = cursor.read_u32::<LE>(); let addr = *u64::from(laddr) .set_bits(32..36, u64::from(stuffed.get_bits(12..16))) .set_bits(36..39, u64::from(stuffed.get_bits(6..9))); let size = u64::from(stuffed.get_bits(16..32)); let counter = stuffed.get_bits(0..4) as u8; buffers.push(IPCBuffer { addr, size, ty: IPCBufferType::X { counter }, phantom: PhantomData }); } for i in 0..hdr.num_a_descriptors() + hdr.num_b_descriptors() + hdr.num_w_descriptors() { // Skip 3 words let lsize = cursor.read_u32::<LE>(); let laddr = cursor.read_u32::<LE>(); let stuff = cursor.read_u32::<LE>(); let addr = *u64::from(laddr) .set_bits(32..36, u64::from(stuff.get_bits(28..32))) .set_bits(36..39, u64::from(stuff.get_bits(2..5))); let size = *u64::from(lsize) .set_bits(32..36, u64::from(stuff.get_bits(24..28))); let flags = stuff.get_bits(0..2) as u8; let ty = if i < hdr.num_a_descriptors() { IPCBufferType::A { flags } } else if i < hdr.num_a_descriptors() + hdr.num_b_descriptors() { IPCBufferType::B { flags } } else { IPCBufferType::W { flags } }; buffers.push(IPCBuffer { addr, size, ty, phantom: PhantomData }); } // Finally, read the raw section // TODO: Domain // Align to 16-byte boundary let before_pad = align_up(cursor.pos(), 16) - cursor.pos(); cursor.skip_read(before_pad); /*let input_objects = if this.domain_obj.is_some() { // Response have a "weird" domain header, at least in mephisto. //assert_eq!(domain_hdr.get_data_len() as usize, mem::size_of::<T>() + 8 + 8); // raw section size = Padding + domain header + SFCO/errcode + data size let input_objects = cursor.read_u32::<LE>() as usize; assert_eq!(hdr.get_raw_section_size() as u64, div_ceil((0x10 + 0x10 + 0x10 + mem::size_of::<T>() as usize + input_objects * 4) as u64, 4), "Invalid raw data size for domain"); let _domain_id = cursor.read_u32::<LE>(); cursor.skip_read(8); Some(input_objects) } else { None };*/ // Find SFCO let is_request = match cursor.skip_read(4) { b"SFCI" => true, b"SFCO" => false, _ => panic!("Invalid request magic!") }; let version = cursor.read_u32::<LE>(); assert!(version <= 1, "Unsupported version"); let cmdid_error = cursor.read_u32::<LE>(); // Unused in version == 0 and domain messages in official code. Doesn't hurt to keep it anyways. let tokenval = cursor.read_u32::<LE>(); let token = if version == 1 { Some(tokenval) } else { None }; /*if this.domain_obj.is_none() { assert_eq!(hdr.get_raw_section_size() as usize, (mem::size_of::<T>() + 8 + 8 + 0x10) / 4); }*/ let raw = Some(cursor.read_raw::<RAW>()); /*if let Some(input_objects) = input_objects { for _ in 0..input_objects { this.objects.push(cursor.read_u32::<LE>()); } }*/ // Total padding should be 0x10 cursor.skip_read(0x10 - before_pad); // TODO: Read the end Message { ty, pid, buffers, copy_handles, move_handles, is_request, cmdid_error, token, raw } } } /// Quickly find the type and cmdid of an IPC message for the server dispatcher. /// /// Doesn't do any validation that the message is valid. fn find_ty_cmdid(buf: &[u8]) -> Option<(u16, u32)> { if buf.len() < 8 { return None } let hdr = u64::from_le_bytes(buf[0..8].try_into().expect("cmd header is invalid")); let ty = hdr.get_bits(0..16) as u16; let x_descs = hdr.get_bits(16..20) as usize; let a_descs = hdr.get_bits(20..24) as usize; let b_descs = hdr.get_bits(24..28) as usize; let w_descs = hdr.get_bits(28..32) as usize; let (pid, copyhandles, movehandles) = if hdr.get_bit(63) { if buf.len() < 12 { return None } let dsc = u32::from_le_bytes(buf[8..12].try_into().expect("cmd description is invalid")); (dsc.get_bit(0) as usize, dsc.get_bits(1..5) as usize, dsc.get_bits(5..9) as usize) } else { (0, 0, 0) }; let raw = 8 + (hdr.get_bit(63) as usize) * 4 + pid * 8 + (copyhandles + movehandles) * 4 + (x_descs * 8 + (a_descs + b_descs + w_descs) * 12); let raw = align_up(raw, 16) + 8; if buf.len() < raw + 4 { return None } let cmdid = u32::from_le_bytes(buf[raw..raw + 4].try_into().expect("command id is invalid")); Some((ty, cmdid)) }