1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
//! Preemptive Mutex
//!
//! # Behaviour
//!
//! Lock that preempts if it cannot be obtained immediately. See the [sync] module.
//!
//! The mutex holds a queue of the waiters, and when unlocking it checks if there is contention,
//! in which case it wakes up the head of the queue by popping it and adding it to the schedule queue.
//!
//! The lock performs additional checks around the owner of the lock, and panics if double-locking
//! is detected.
//!
//! When there is contention and the thread is put to sleep, it is removed from the schedule queue,
//! and an Arc to its [`ThreadStruct`] is put in the waiters queue. This means that the thread will
//! stay alive at least until it is waked up.
//!
//! Most of this module is copy-pasted from std Mutexes, and try to preserve the same structure,
//! while the documentation has been re-written.
//!
//! However we don't implement poisons, as kernel thread panicking while holding a Mutex
//! should simply kernel panic, and abort.
//!
//! # Internal workings
//!
//! The secret about these mutex is that they're just fancy wrappers around a [`SpinLock`].
//!
//! This `SpinLock` protects the queue. When checking for contention, we take the SpinLock,
//! which arbitrates all concurrent operations for us, and then simply check if the queue of waiters
//! is empty.
//!
//! If necessary we add ourselves to the queue, and then both unschedule ourselves and unlock it
//! simultaneously.
//!
//! Unlocking performs pretty much the same operation.
//!
//! [sync]: crate::sync
//! [`ThreadStruct`]: crate::process::ThreadStruct
//! [`SpinLock`]: crate::sync::SpinLock

use super::SpinLock;
use crate::process::ThreadStruct;
use crate::scheduler::{get_current_thread, add_to_schedule_queue, unschedule};
use alloc::sync::Arc;
use alloc::vec::Vec;
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::marker::PhantomData;

/// A type alias for the result of a nonblocking locking method.
pub type TryLockResult<Guard> = Result<Guard, ()>;


/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block kernel threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a [`new`]
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from [`lock`] and [`try_lock`], which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// [`new`]: Mutex::new
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
pub struct Mutex<T> {
    /// The data that we're protecting.
    ///
    /// Std Mutex boxes the data so it is Pin. We don't care for that in the kernel.
    /// However this adds a bound for T: Sized.
    data: UnsafeCell<T>,
    /// The struct responsible for arbitrating accesses to `.data`.
    inner: MutexInner,
}

unsafe impl<T: Send> Send for Mutex<T> { }
unsafe impl<T: Send> Sync for Mutex<T> { }

/// The type responsible of actually performing the locking of the mutex.
///
/// Just a `SpinLock<`[`MutexInnerInner`]`>>`.
///
/// This might seem a bit weird to have an intermediate a struct just for that,
/// but it is to stay as close as possible to std's Mutex design, so we can copy-paste it with ease.
struct MutexInner {
    /// A spin lock arbitrating accesses to the mutex's state.
    spin_lock: SpinLock<MutexInnerInner>
}


/// The bookkeeping of a Mutex. Knows the current owner, and holds the waiters queue.
struct MutexInnerInner {
    /// The owner of this Mutex. None means free.
    ///
    /// We represent the owner as a pointer to its ThreadStruct.
    owner: Option<usize>,
    /// Queue of threads waiting on this mutex.
    waiters: Vec<Arc<ThreadStruct>>
}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`Deref`]: core::ops::Deref
/// [`DerefMut`]: core::ops::DerefMut
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MutexGuard<'a, T: 'a> {
    /// Reference to the Mutex we'll unlock when dropped.
    __lock: &'a Mutex<T>,
    /// Raw pointer just to make MutexGuard !Send.
    __phantom: PhantomData<*mut ()>
}

unsafe impl<T: Sync> Sync for MutexGuard<'_, T> { }

/* ****************************************** MUTEX ********************************************* */

// copied from std, removed poison and some std specific doc tests //

impl<T> Mutex<T> {
    /// Creates a new mutex in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use crate::sync::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// ```
    pub const fn new(t: T) -> Mutex<T> {
        Self {
            data: UnsafeCell::new(t),
            inner: MutexInner {
                spin_lock: SpinLock::new(MutexInnerInner {
                    owner: None,
                    waiters: Vec::new()
                })
            }
        }
    }

    /// Consumes this mutex, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// assert_eq!(mutex.into_inner().unwrap(), 0);
    /// ```
    pub fn into_inner(self) -> T {
        // We know statically that there are no outstanding references to
        // `self` so there's no need to lock the inner mutex.
        self.data.into_inner()
    }

    /// Acquires a mutex, blocking the current kernel thread until it is able to do so.
    ///
    /// This function will block the local kernel thread until it is available to acquire
    /// the mutex. Upon returning, the thread is the only thread with the lock
    /// held. An RAII guard is returned to allow scoped unlock of the lock. When
    /// the guard goes out of scope, the mutex will be unlocked.
    ///
    /// # Panics
    ///
    /// This function panics when called if the lock is already held by
    /// the current thread.
    pub fn lock(&self) -> MutexGuard<'_, T> {
        unsafe {
            self.inner.raw_lock();
            MutexGuard::new(self)
        }
    }

    /// Attempts to acquire this lock.
    ///
    /// If the lock could not be acquired at this time, then [`Err`] is returned.
    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
    /// guard is dropped.
    ///
    /// This function does not preempt.
    ///
    /// Note however that it still needs to lock the internal [`SpinLock`], and might temporarily
    /// be blocking.
    ///
    /// # Double locking
    ///
    /// Unlike [`lock`], this function will not panic if we already are the holder of this mutex,
    /// and simply return [`Err`] instead.
    ///
    /// This makes it suitable for the kernel panic handler for example, where we want to acquire
    /// locks to resources possibly already held by the current thread, without panicking once more.
    ///
    /// [`lock`]: Mutex::lock
    pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
        unsafe {
            if self.inner.try_lock() {
                Ok(MutexGuard::new(self))
            } else {
                Err(())
            }
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut().unwrap() = 10;
    /// assert_eq!(*mutex.lock().unwrap(), 10);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe {
            // safe:
            // We know statically that there are no other references to `self`, so
            // there's no need to lock the inner mutex.
            &mut *self.data.get()
        }
    }
}

impl<T> From<T> for Mutex<T> {
    /// Creates a new mutex in an unlocked state ready for use.
    /// This is equivalent to [`Mutex::new`].
    ///
    /// [`Mutex::new`]: ../../std/sync/struct.Mutex.html#method.new
    fn from(t: T) -> Self {
        Mutex::new(t)
    }
}

impl<T: Default> Default for Mutex<T> {
    /// Creates a `Mutex<T>`, with the `Default` value for T.
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.try_lock() {
            Ok(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
            Err(()) => {
                /// Struct displayed as `<locked>`.
                struct LockedPlaceholder;
                impl fmt::Debug for LockedPlaceholder {
                    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                        f.write_str("<locked>")
                    }
                }

                f.debug_struct("Mutex").field("data", &LockedPlaceholder).finish()
            }
        }
    }
}

/* *************************************** MUTEX GUARD ****************************************** */

// copied from std, no edits //
impl<'mutex, T> MutexGuard<'mutex, T> {
    /// Create an MutexGuard.
    ///
    /// # Safety
    ///
    /// Must only be called once we are ensured we are holing the lock,
    /// as it will unlock it when dropped
    unsafe fn new(lock: &'mutex Mutex<T>) -> MutexGuard<'mutex, T> {
        MutexGuard {
            __lock: lock,
            __phantom: PhantomData,
        }
    }
}

impl<T> Deref for MutexGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.__lock.data.get() }
    }
}

impl<T> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.__lock.data.get() }
    }
}

impl<T> Drop for MutexGuard<'_, T> {
    #[inline]
    fn drop(&mut self) {
        unsafe {
            self.__lock.inner.raw_unlock();
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

/* *************************************** MUTEX INNER ****************************************** */

// original edits for sunrise kernel //

impl MutexInner {
    /// Try to obtain the mutex, without preempting.
    ///
    /// Returns false if the mutex was not immediately available.
    unsafe fn try_lock(&self) -> bool {
        let mut inner_guard = self.spin_lock.lock();
        if let Some(_owner) = inner_guard.owner {
            // already taken :/
            false
        } else {
            debug_assert!(inner_guard.waiters.is_empty(), "Mutex is not held, but there are some waiters");

            // wow cool ! take it
            let me = &*get_current_thread() as *const ThreadStruct as usize;
            inner_guard.owner = Some(me);
            true
        }
    }

    /// Locks the mutex blocking the current thread until it is available.
    ///
    /// # Panics
    ///
    /// Panics if we're already the owner of the mutex, as this is a deadlock otherwise.
    unsafe fn raw_lock(&self) {
        let me = get_current_thread();
        let mut inner_guard = self.spin_lock.lock();
        if let Some(owner) = inner_guard.owner {
            if owner == &*me as *const ThreadStruct as usize {
                panic!("Deadlock ! Re-taking the mutex when we already are its owner");
            }
            // add ourselves to the queue of waiters,
            inner_guard.waiters.push(me);
            // and unschedule.
            // unschedule will drop the inner_guard only once we're properly unscheduled,
            // so that we can't miss a wake-up between the registration and actual unschedule.
            //
            // it will also re-lock the inner_guard for us when we are finally waked up,
            // but we don't care about that, so immediately drop it.
            let _ = unschedule(&self.spin_lock, inner_guard);
            // cool, we now have the mutex for us,
            // return.
        } else {
            // no owner, we can take it !
            debug_assert!(inner_guard.waiters.is_empty(), "Mutex is not held, but there are some waiters");

            inner_guard.owner = Some(&*me as *const ThreadStruct as usize);
        }
    }

    /// Unlocks the mutex.
    ///
    /// Consider switching from the pair of raw_lock() and raw_unlock() to
    /// lock() whenever possible.
    ///
    /// # Panics
    ///
    /// Panics if the mutex wasn't held, or if our thread was not the owner of this mutex,
    /// as this definitely is a bug and we shouldn't have created a MutexGuard for it.
    unsafe fn raw_unlock(&self) {
        let me = &*get_current_thread() as *const ThreadStruct as usize;
        let mut inner = self.spin_lock.lock();
        match inner.owner {
            None => panic!("Unlocked a non-held mutex"),
            Some(x) if x != me => panic!("Unlocked a mutex held by someone else"),
            Some(_) => (),
        }
        if inner.waiters.is_empty() {
            // no waiter, make the mutex non-held and return
            inner.owner = None
        } else {
            // has a waiter, make it the owner of the mutex, schedule it, and return
            let waiter = inner.waiters.remove(0);
            inner.owner = Some(&*waiter as *const ThreadStruct as usize);
            add_to_schedule_queue(waiter);
        }
    }
}

/* ****************************************** TESTS ********************************************* */

/* Only tests what's trivially testable :/ */

#[cfg(test)]
mod tests {
    /*
    use crate::sync::mpsc::channel;
    use crate::sync::{Arc, Mutex, Condvar};
    use crate::sync::atomic::{AtomicUsize, Ordering};
    use crate::thread;
    */

    use crate::sync::Mutex;
    use core::sync::atomic::{AtomicUsize, Ordering};
    use alloc::sync::Arc;

    /* struct Packet<T>(Arc<(Mutex<T>, Condvar)>); */

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    /*
    #[test]
    fn smoke() {
        let m = Mutex::new(());
        drop(m.lock());
        drop(m.lock());
    }
    */

    /*
    #[test]
    fn lots_and_lots() {
        const J: u32 = 1000;
        const K: u32 = 3;

        let m = Arc::new(Mutex::new(0));

        fn inc(m: &Mutex<u32>) {
            for _ in 0..J {
                *m.lock().unwrap() += 1;
            }
        }

        let (tx, rx) = channel();
        for _ in 0..K {
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move|| { inc(&m2); tx2.send(()).unwrap(); });
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move|| { inc(&m2); tx2.send(()).unwrap(); });
        }

        drop(tx);
        for _ in 0..2 * K {
            rx.recv().unwrap();
        }
        assert_eq!(*m.lock().unwrap(), J * K * 2);
    }
    */

    /*
    #[test]
    fn try_lock() {
        let m = Mutex::new(());
        *m.try_lock().unwrap() = ();
    }
    */

    #[test]
    fn test_into_inner() {
        let m = Mutex::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = Mutex::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    /* no poison here :)
    #[test]
    fn test_into_inner_poison() {
        let m = Arc::new(Mutex::new(NonCopy(10)));
        let m2 = m.clone();
        let _ = thread::spawn(move || {
            let _lock = m2.lock().unwrap();
            panic!("test panic in inner thread to poison mutex");
        }).join();

        assert!(m.is_poisoned());
        match Arc::try_unwrap(m).unwrap().into_inner() {
            Err(e) => assert_eq!(e.into_inner(), NonCopy(10)),
            Ok(x) => panic!("into_inner of poisoned Mutex is Ok: {:?}", x),
        }
    }
    */

    #[test]
    fn test_get_mut() {
        let mut m = Mutex::new(NonCopy(10));
        *m.get_mut() = NonCopy(20);
        assert_eq!(m.into_inner(), NonCopy(20));
    }

    /* no poison :)
    #[test]
    fn test_get_mut_poison() {
        let m = Arc::new(Mutex::new(NonCopy(10)));
        let m2 = m.clone();
        let _ = thread::spawn(move || {
            let _lock = m2.lock().unwrap();
            panic!("test panic in inner thread to poison mutex");
        }).join();

        assert!(m.is_poisoned());
        match Arc::try_unwrap(m).unwrap().get_mut() {
            Err(e) => assert_eq!(*e.into_inner(), NonCopy(10)),
            Ok(x) => panic!("get_mut of poisoned Mutex is Ok: {:?}", x),
        }
    }
    */

    /*
    #[test]
    fn test_mutex_arc_condvar() {
        let packet = Packet(Arc::new((Mutex::new(false), Condvar::new())));
        let packet2 = Packet(packet.0.clone());
        let (tx, rx) = channel();
        let _t = thread::spawn(move|| {
            // wait until parent gets in
            rx.recv().unwrap();
            let &(ref lock, ref cvar) = &*packet2.0;
            let mut lock = lock.lock().unwrap();
            *lock = true;
            cvar.notify_one();
        });

        let &(ref lock, ref cvar) = &*packet.0;
        let mut lock = lock.lock().unwrap();
        tx.send(()).unwrap();
        assert!(!*lock);
        while !*lock {
            lock = cvar.wait(lock).unwrap();
        }
    }
    */

    /* no poison :)
    #[test]
    fn test_arc_condvar_poison() {
        let packet = Packet(Arc::new((Mutex::new(1), Condvar::new())));
        let packet2 = Packet(packet.0.clone());
        let (tx, rx) = channel();

        let _t = thread::spawn(move || -> () {
            rx.recv().unwrap();
            let &(ref lock, ref cvar) = &*packet2.0;
            let _g = lock.lock().unwrap();
            cvar.notify_one();
            // Parent should fail when it wakes up.
            panic!();
        });

        let &(ref lock, ref cvar) = &*packet.0;
        let mut lock = lock.lock().unwrap();
        tx.send(()).unwrap();
        while *lock == 1 {
            match cvar.wait(lock) {
                Ok(l) => {
                    lock = l;
                    assert_eq!(*lock, 1);
                }
                Err(..) => break,
            }
        }
    }
    */

    /* no poison :)
    #[test]
    fn test_mutex_arc_poison() {
        let arc = Arc::new(Mutex::new(1));
        assert!(!arc.is_poisoned());
        let arc2 = arc.clone();
        let _ = thread::spawn(move|| {
            let lock = arc2.lock().unwrap();
            assert_eq!(*lock, 2);
        }).join();
        assert!(arc.lock().is_err());
        assert!(arc.is_poisoned());
    }
    */

    /*
    #[test]
    fn test_mutex_arc_nested() {
        // Tests nested mutexes and access
        // to underlying data.
        let arc = Arc::new(Mutex::new(1));
        let arc2 = Arc::new(Mutex::new(arc));
        let (tx, rx) = channel();
        let _t = thread::spawn(move|| {
            let lock = arc2.lock().unwrap();
            let lock2 = lock.lock().unwrap();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }
    */

    /*
    #[test]
    fn test_mutex_arc_access_in_unwind() {
        let arc = Arc::new(Mutex::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move|| -> () {
            struct Unwinder {
                i: Arc<Mutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *self.i.lock().unwrap() += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        }).join();
        let lock = arc.lock().unwrap();
        assert_eq!(*lock, 2);
    }
    */

    /* our mutex don't work on T: ?Sized
    #[test]
    fn test_mutex_unsized() {
        let mutex: &Mutex<[i32]> = &Mutex::new([1, 2, 3]);
        {
            let b = &mut *mutex.lock().unwrap();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.lock().unwrap(), comp);
    }
    */
}