1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
//! Arch-independent traits for architectures that implement paging as a hierarchy of page tables // what the architecture code still has define use super::arch::{PAGE_SIZE, ENTRY_COUNT}; use super::MappingAccessRights; use crate::mem::{VirtualAddress, PhysicalAddress}; use crate::utils::align_up_checked; use core::marker::PhantomData; use core::ops::{Deref, DerefMut}; use core::iter::{Iterator, Peekable}; /// A hierarchical paging is composed of entries. An entry can be in the following states: /// /// - Available, aka unused /// - Present, which is used and has a backing physical address /// - Guarded, which is reserved and will cause a pagefault on use. /// /// PageState is generic over various kind of Present states, similar to the /// Option type. #[derive(Debug)] pub enum PageState<T> { /// Available, aka unused. /// Will page fault on use. Available, /// Guarded. Reserved and will cause a pagefault on use. /// Used to create guard pages (in KernelStack, etc.) in KernelLand, where the tracking of /// the type of each memory region is done directly in the page tables. Guarded, /// Present. Used and has a backing physical address. Present(T) } impl<T> PageState<T> { /// Move the value T out of the PageState<T> if it is Present(T). /// /// # Panics /// /// Panics if the self value isn't Present. pub fn unwrap(self) -> T { match self { PageState::Present(t) => t, _ => panic!("Table was not present") } } /// Maps a PageState<T> to PageState<U> by applying a function to a /// contained value. pub fn map<U, F>(self, f: F) -> PageState<U> where F: FnOnce(T) -> U { match self { PageState::Present(t) => PageState::Present(f(t)), PageState::Guarded => PageState::Guarded, PageState::Available => PageState::Available } } /// Turns the PageState into an Option, setting both Guarded and Available /// state to None, and Present(t) state to Some(t). pub fn as_option(&self) -> Option<&T> { match *self { PageState::Present(ref t) => Some(t), PageState::Guarded => None, PageState::Available => None, } } } /// A hierarchical paging is composed of entries. All entries implements the following trait pub trait HierarchicalEntry { /// An entry comports some flags. They are often represented by a structure. type EntryFlagsType: From<MappingAccessRights>; /// Is the entry unused ? fn is_unused(&self) -> bool; /// Clear the entry fn set_unused(&mut self) -> PageState<PhysicalAddress>; /// Is the entry a page guard ? fn is_guard(&self) -> bool; /// Get the current entry flags fn flags(&self) -> Self::EntryFlagsType; /// Get the associated physical address, if available fn pointed_frame(&self) -> PageState<PhysicalAddress>; /// Sets the entry fn set(&mut self, frame: PhysicalAddress, flags: Self::EntryFlagsType); /// Make this entry a page guard fn set_guard(&mut self); } /// A hierarchical paging is composed of tables. All tables must implement the following trait /// A table of entries, either the top-level directory or one of the page tables. /// A table is a parent table if its child are also tables, instead of regular pages. pub trait HierarchicalTable { /// The Entry our table has type EntryType : HierarchicalEntry; /// A Flusher that should be called on table modifications type CacheFlusherType : PagingCacheFlusher; /// If we're a parent table, the type of our child tables. /// If we're not a parent, this type will never be used and you can set it to Self. type ChildTableType : HierarchicalTable; /// gets the raw array of entries fn entries(&mut self) -> &mut [Self::EntryType]; /// zero out the whole table fn zero(&mut self) { for entry in self.entries().iter_mut() { entry.set_unused(); } Self::CacheFlusherType::flush_whole_cache(); } /// Makes all entries guarded fn guard_all_entries(&mut self) { for entry in &mut self.entries().iter_mut() { entry.set_guard(); } Self::CacheFlusherType::flush_whole_cache(); } /// Creates a mapping on the nth entry of a table fn map_nth_entry(&mut self, entry: usize, paddr: PhysicalAddress, flags: <Self::EntryType as HierarchicalEntry>::EntryFlagsType) { self.entries()[entry].set(paddr, flags); Self::CacheFlusherType::flush_whole_cache(); } /// Marks the nth entry as guard page fn guard_nth_entry(&mut self, entry: usize) { self.entries()[entry].set_guard(); Self::CacheFlusherType::flush_whole_cache(); } /// Marks the nth entry as guard page fn unmap_nth_entry(&mut self, entry: usize) { self.entries()[entry].set_unused(); Self::CacheFlusherType::flush_whole_cache(); } /// Called to check if this table's entries should be treated as pointers to child tables. /// Level 0 = simple table, level 1 = parent of simple tables, level 2 = parent of parent of simple tables, ... fn table_level() -> usize; /// the size an entry in this table spans in virtual memory. /// should be something like PAGE_SIZE * (ENTRY_COUNT ^ table level) fn entry_vm_size() -> usize { ENTRY_COUNT.pow(Self::table_level() as u32) * PAGE_SIZE } /// Gets a reference to a child page table. /// /// # Panics /// /// Should panic if called on a table which isn't a parent table. fn get_child_table(&mut self, index: usize) -> PageState<SmartHierarchicalTable<Self::ChildTableType>>; /// Allocates a child page table, zero it and add an entry pointing to it. /// /// # Panics /// /// Should panic if called on a table which isn't a parent table. /// Should panic if entry was not available. // todo: paging: return PhysicalMemoryExhaustion when allocating page table failed // body: Right now we panic. This is terrible. fn create_child_table(&mut self, index: usize) -> SmartHierarchicalTable<Self::ChildTableType>; /// Gets the child page table at given index, or creates it if it does not exist /// /// # Panics /// /// Should panic if called on a table which isn't a parent table. fn get_child_table_or_create(&mut self, index: usize) -> PageState<SmartHierarchicalTable<Self::ChildTableType>> { assert!(Self::table_level() >= 1, "get_child_table_or_create() called on non-parent table"); match self.entries()[index].pointed_frame() { PageState::Present(_) => self.get_child_table(index), PageState::Available => PageState::Present(self.create_child_table(index)), PageState::Guarded => PageState::Guarded } } } /// Most implementations of paging have are accelerated with a cache that must be manually updated /// when changes to the page tables are made. The way we specify which part of the cache gets invalidated /// is arch-specific. We only provide the declaration for a flusher that our page tables can use. /// //TODO /// Our implementation only enables flushing the whole cache for every operation, which is the only /// available way on i386, but should be more fine-grained for other architectures pub trait PagingCacheFlusher { /// Flushes the whole cache. fn flush_whole_cache(); } /// Flusher that doesn't flush. /// /// When passing this struct the TLB will **not** be flushed. Used by Inactive/PagingOff page tables, /// and DynamicHierarchy #[derive(Debug)] pub struct NoFlush; impl PagingCacheFlusher for NoFlush { fn flush_whole_cache() { /* do nothing */ } } /// This is just a wrapper for a pointer to a table. /// It enables us to do handle when it is dropped #[allow(missing_debug_implementations)] pub struct SmartHierarchicalTable<'a, T: HierarchicalTable>(*mut T, PhantomData<&'a T>); impl<'a, T: HierarchicalTable> SmartHierarchicalTable<'a, T> { /// Wraps the given pointer in a `SmartHierarchicalTable`. pub fn new(inner: *mut T) -> SmartHierarchicalTable<'a, T> { SmartHierarchicalTable(inner, PhantomData) } } impl<'a, T: HierarchicalTable> Deref for SmartHierarchicalTable<'a, T> { type Target = T; fn deref(&self) -> &T { unsafe { self.0.as_ref().unwrap() } } } impl<'a, T: HierarchicalTable> DerefMut for SmartHierarchicalTable<'a, T> { fn deref_mut(&mut self) -> &mut T { unsafe { self.0.as_mut().unwrap() } } } impl<'a, T: HierarchicalTable> Drop for SmartHierarchicalTable<'a, T> { fn drop(&mut self) { unsafe { ::core::ptr::drop_in_place(self.0); } } } /// A trait operating on a whole hierarchy of tables. /// /// Implementer only has to provide a function to map the top level table, /// and the trait does the rest. /// /// Thanks to this we can have the same api for every kind of page tables, the only difference is /// the way we access the page directory : /// /// * an ActiveHierarchy will want to use recursive mapping /// * an InactiveHierarchy will want to temporarily map the top level page /// * a PagingOffHierarchy will point to physical memory pub trait TableHierarchy { /// The type of the top level table. type TopLevelTableType : HierarchicalTable; /// Gets a reference to the top level table, either through recursive mapping, /// or by temporarily mapping it in the currently active page tables. fn get_top_level_table(&mut self) -> SmartHierarchicalTable<Self::TopLevelTableType>; /// Creates a mapping in the page tables with the given flags. /// /// The physical frames to map are passed as an iterator that yields physical addresses. /// The mapping begins at `start_address`, and advances by PAGE_SIZE steps, consuming /// `frames_iterator` every time. /// When `frames_iterator` is depleted, the mapping stops. /// /// # Panics /// /// Panics if address is not page-aligned. /// Panics if any encountered entry was already in use fn map_to_from_iterator<I>(&mut self, frames_iterator: I, start_address: VirtualAddress, flags: MappingAccessRights) where I: Iterator<Item=PhysicalAddress> { assert_eq!(start_address.addr() % PAGE_SIZE, 0, "Address is not page aligned"); /// Delay work to child tables, and map it ourselves when we have no more children. /// Panics if any entry was already in use fn rec_map_to<T, I>(table: &mut SmartHierarchicalTable<'_, T>, frames_iterator: &mut Peekable<I>, start_address: usize, flags: MappingAccessRights) where T: HierarchicalTable, I: Iterator<Item=PhysicalAddress> { let entry_offset : usize = start_address / T::entry_vm_size(); assert!(entry_offset < ENTRY_COUNT, "rec_map_to computed an entry offset > ENTRY_COUNT, is your arch-specific paging valid ?"); // our first child table will have to map to it's nth entry let mut child_start_address = start_address % T::entry_vm_size(); for index in entry_offset..ENTRY_COUNT { if frames_iterator.peek().is_none() { return; } match (T::table_level(), table.entries()[index].pointed_frame()) { (0, PageState::Available) => { // we're a simple table, map it ourselves. table.map_nth_entry(index, frames_iterator.next().unwrap(), <T::EntryType as HierarchicalEntry>::EntryFlagsType::from(flags)); }, (level, PageState::Available) | (level, PageState::Present(_)) if level > 0 => { // we're a parent table, delay work to our childs ! let mut child_table = table.get_child_table_or_create(index).unwrap(); rec_map_to(&mut child_table, frames_iterator, child_start_address, flags); // all other child tables will start mapping from their first entry child_start_address = 0; }, _ => { panic!("rec_map_to was asked to map a non-available entry"); } } } } rec_map_to(&mut self.get_top_level_table(), &mut frames_iterator.peekable(), start_address.addr(), flags) } /// Creates a span of guard pages /// /// This function will avoid creating child tables filled only with guarded entry, /// and instead guard a single entry in the parent. This is called a HUGE guard. /// /// # Panics /// /// Panics if any encountered entry was already in use /// Panics if address is not page-aligned. /// Panics if length is not page-aligned. fn guard(&mut self, address: VirtualAddress, mut length: usize) { assert_eq!(address.addr() % PAGE_SIZE, 0, "Guarding : address is not page aligned"); assert_eq!(length % PAGE_SIZE, 0, "Guarding : length is not page aligned"); /// Delay work to child tables, and guard it ourselves when we have no more children. /// Panics if any entry was already in use fn rec_guard<T>(table : &mut SmartHierarchicalTable<'_, T>, start_address: usize, length: &mut usize) where T: HierarchicalTable { let start_entry: usize = start_address / T::entry_vm_size(); assert!(start_entry < ENTRY_COUNT, "rec_guard computed an entry offset > ENTRY_COUNT, is your arch-specific paging valid ?"); let mut child_start_address = start_address % T::entry_vm_size(); for entry_index in start_entry..ENTRY_COUNT { if *length == 0 { return; } match (T::table_level(), table.entries()[entry_index].pointed_frame()) { (_, PageState::Guarded) => panic!("rec_guard encountered an already guarded entry"), (0, PageState::Present(_)) => panic!("rec_guard was asked to guard a non-available entry"), (_, PageState::Present(_)) => { // delay work to our child let mut child_table = table.get_child_table(entry_index).unwrap(); rec_guard(&mut child_table, child_start_address, length); }, (_, PageState::Available) if *length >= T::entry_vm_size() && child_start_address == 0 => { // map a (huge ?) guard here table.guard_nth_entry(entry_index); *length -= T::entry_vm_size(); }, (_, PageState::Available) => { // length to map is smaller than our granularity, we must be a parent table assert!(T::table_level() > 0, "rec_guard encountered an error, is your arch-specific paging valid ?"); // create a child table, and recurse into it. let mut child_table = table.create_child_table(entry_index); rec_guard(&mut child_table, child_start_address, length); } } // all other children will start guarding from their first entry child_start_address = 0; } } rec_guard(&mut self.get_top_level_table(), address.addr(), &mut length) } /// Unmaps a range of virtual address. /// On every frames mapped by a level 0 table, the closure passed as parameter will be called /// after having deleted the entry. /// If unmap encounters a guard page, it is unmapped, and the closure is not called. /// If unmap encounters a HUGE guard page, it decides if it must split it and might /// create a child table which is only partly guarded. /// If unmap encounters a non-mapped entry, it panics, as this is probably a bug. /// /// If a table is left empty after an unmap, it is never deallocated, and left as is. /// /// # Panics /// /// Panics if encounters any entry that was not mapped. /// Panics if address is not page-aligned. /// Panics if length is not page-aligned. fn unmap<C>(&mut self, address: VirtualAddress, mut length: usize, mut callback: C) where C: FnMut(PhysicalAddress) { assert_eq!(address.addr() % PAGE_SIZE, 0, "Address is not page aligned"); assert_eq!(length % PAGE_SIZE, 0, "Length is not page aligned"); /// Delay work to child tables, and unmap it ourselves when we have no more children. fn rec_unmap<T, C>(table: &mut SmartHierarchicalTable<'_, T>, start_address: usize, length: &mut usize, callback: &mut C) where T: HierarchicalTable, C: FnMut(PhysicalAddress) { let start_offset: usize = start_address / T::entry_vm_size(); assert!(start_offset < ENTRY_COUNT, "rec_unmap computed an entry offset > ENTRY_COUNT, is your arch-specific paging valid ?"); let mut child_start_address = start_address % T::entry_vm_size(); for entry_index in start_offset..ENTRY_COUNT { if *length == 0 { return; } match (T::table_level(), table.entries()[entry_index].pointed_frame()) { (_, PageState::Available) => panic!("unmap encountered a non-mapped entry, is this a bug ?"), (0, PageState::Present(paddr)) => { // unmap the entry and call callback table.unmap_nth_entry(entry_index); callback(paddr); *length -= T::entry_vm_size(); }, (_, PageState::Present(_)) => { // recurse into child table let mut child_table = table.get_child_table(entry_index).unwrap(); rec_unmap(&mut child_table, child_start_address, length, callback) }, (_, PageState::Guarded) if *length >= T::entry_vm_size() => { // make the (huge ?) guard available table.unmap_nth_entry(entry_index); *length -= T::entry_vm_size(); }, (_, PageState::Guarded) => { // we have to split the huge guard table.unmap_nth_entry(entry_index); let mut child_table = table.create_child_table(entry_index); child_table.guard_all_entries(); rec_unmap(&mut child_table, child_start_address, length, callback) } } // next child table will start on its first entry child_start_address = 0; } } rec_unmap(&mut self.get_top_level_table(), address.addr(), &mut length, &mut callback); } /// Iters in the page tables, applying closure on every mapping. /// On every entry, the closure will be called with its state and the length it maps. /// /// # Panics /// /// Panics if address is not page-aligned. /// Panics if length is not page-aligned. fn for_every_entry<C>(&mut self, address: VirtualAddress, mut length: usize, mut callback: C) where C: FnMut(PageState<PhysicalAddress>, usize) { assert_eq!(address.addr() % PAGE_SIZE, 0, "Address is not page aligned"); assert_eq!(length % PAGE_SIZE, 0, "Length is not page aligned"); /// Delay work to child tables, and iter it ourselves when we have no more children. fn rec_iter<T, C>(table: &mut SmartHierarchicalTable<'_, T>, start_address: usize, length: &mut usize, callback: &mut C) where T: HierarchicalTable, C: FnMut(PageState<PhysicalAddress>, usize) { let start_offset: usize = start_address / T::entry_vm_size(); assert!(start_offset < ENTRY_COUNT, "rec_iter computed an entry offset > ENTRY_COUNT, is your arch-specific paging valid ?"); let mut child_start_address = start_address % T::entry_vm_size(); for entry_index in start_offset..ENTRY_COUNT { if *length == 0 { return; } match (T::table_level(), table.entries()[entry_index].pointed_frame()) { (level, PageState::Present(_)) if level != 0 => { // recurse into child table let mut child_table = table.get_child_table(entry_index).unwrap(); rec_iter(&mut child_table, child_start_address, length, callback) }, (_, state) => { callback(state, T::entry_vm_size()); *length = length.saturating_sub(T::entry_vm_size()); }, } // next child table will start on its first entry child_start_address = 0; } } rec_iter(&mut self.get_top_level_table(), address.addr(), &mut length, &mut callback); } /// Finds a virtual space hole that is at least length long, between start_addr and end_addr. /// /// # Panics /// /// Panics if start_addr is not page-aligned. /// Panics if length is not page-aligned. /// Panics if alignment is not page-aligned. /// Panics if start_addr > end_addr. /// Panics if length is zero. #[allow(clippy::missing_docs_in_private_items)] fn find_available_virtual_space_aligned(&mut self, length: usize, start_addr: VirtualAddress, end_addr: VirtualAddress, alignment: usize ) -> Option<VirtualAddress> { assert_eq!(start_addr.addr() % PAGE_SIZE, 0, "start_addr is not page aligned"); assert_eq!(length % PAGE_SIZE, 0, "length is not page aligned"); assert_eq!(alignment % PAGE_SIZE, 0, "alignment is not page aligned"); assert!(start_addr <= end_addr, "start_addr > end_addr"); assert!(length > 0, "length == 0"); if length > end_addr.addr() - start_addr.addr() { // search region is to small to begin with return None } struct Hole { start_addr: usize, len: usize }; let mut hole; // the hole we are currently considering if let Some(first_aligned_addr) = align_up_checked(start_addr.addr(), alignment) { hole = Hole { start_addr: first_aligned_addr, len: 0 } } else { return None; // there was no aligned address between start_addr and end_addr } /// Delay work to child tables. fn rec_find<T>(table: &mut SmartHierarchicalTable<'_, T>, table_addr: usize, hole: &mut Hole, desired_length: usize, start_addr: usize, end_addr: usize, alignment: usize) where T: HierarchicalTable { let mut next_entry_index; while { next_entry_index = (hole.start_addr.saturating_add(hole.len) - table_addr) / T::entry_vm_size(); next_entry_index < ENTRY_COUNT // does this still concern my table ? && hole.len < desired_length // are we done yet ? && hole.start_addr.checked_add(desired_length) // is length still obtainable ? .filter(|minimun_end| *minimun_end <= end_addr).is_some() } { match (T::table_level(), table.entries()[next_entry_index].pointed_frame()) { (_, PageState::Available) => { // hole is still growing hole.len += T::entry_vm_size(); }, (0, PageState::Present(_)) | (_, PageState::Guarded) => { // hole was not big enough :( // start a new hole on the next aligned address hole.start_addr = (hole.start_addr + hole.len) .checked_add(T::entry_vm_size()) .and_then(|addr| align_up_checked(addr, alignment)) .unwrap_or(usize::max_value()); // if we're at the end of the address space, doing the arithmetic // would overflow. We catch this case, and make the hole's start_address // usize::max_value(). This case is then handled on the next iteration, // the checks will see that desired_length is no longer obtainable, and return. hole.len = 0; }, (_, PageState::Present(_)) => { // we must look into child table let mut child_table = table.get_child_table(next_entry_index).unwrap(); let child_table_addr = table_addr + next_entry_index * T::entry_vm_size(); rec_find(&mut child_table, child_table_addr, hole, desired_length, start_addr, end_addr, alignment) } } } } rec_find(&mut self.get_top_level_table(), 0x00000000, &mut hole, length, start_addr.addr(), end_addr.addr(), alignment ); if hole.len >= length { Some(VirtualAddress(hole.start_addr)) } else { None } } } /// A trait implemented by inactive table hierarchies. /// /// Extends the [TableHierarchy] trait by adding functions to switch to this hierarchy, /// when process-switching. /// /// # Drop /// /// When a process dies, the InactiveHierarchy stored in its [ProcessMemory] is dropped. /// The pages used by this process have already been freed by the bookkeeping, but the /// implementer of this trait is responsible for freeing the tables owned by this hierarchy. /// /// However, it must not free the tables pointing to KernelLand memory, as they are shared /// with other processes, and are still in use. /// /// [ProcessMemory]: crate::paging::process_memory::ProcessMemory pub trait InactiveHierarchyTrait : TableHierarchy { /// Creates a hierarchy. Allocates at least a top level directory, /// makes all its entries unmapped, and makes its last entry recursive. fn new() -> Self; /// Switches to this hierarchy. /// /// Since all process are supposed to have the same view of kernelspace, /// this function will copy the part of the active directory that is mapping kernel space tables /// to the directory being switched to, and then performs the switch. fn switch_to(&mut self); /// Performs a shallow copy of the top level-directory section that maps KernelLand tables. /// /// Used when about to switch to a hierarchy, to update it before switching to it. fn copy_active_kernel_space(&mut self); /// Checks if this inactive hierarchy is actually the currently active one. /// /// Generally this means comparing the current MMU register pointer to top-level table with the /// address of the top-level table of this hierarchy. fn is_currently_active(&self) -> bool; /// Returns the currently active hierarchy as an inactive hierarchy. /// /// Used only when becoming the first process to get a hold on the page tables /// created by the bootstrap before us, so we can free them. /// /// Dropping it will **not free the pages** owned by this InactiveHierarchy. /// This is fine, because they used to belong to the bootstrap, and are already /// considered free by the [FrameAllocator], so we must leak them. /// /// However, it **will free the tables** (including directory) of this InactiveHierarchy, /// except the ones mapping KernelLand memory, as for any other regular process. /// These frames were marked as occupied when initialising the `FrameAllocator`, /// we're making them available again. /// /// # Safety /// /// Having multiple InactiveHierarchy pointing to the same table hierarchy is unsafe. /// Should not be used for any other purpose, it is only guaranteed to be safe to drop. /// /// Make sure you switch to a new table hierarchy before dropping it. /// /// [FrameAllocator]: crate::frame_allocator::FrameAllocator unsafe fn from_currently_active() -> Self; }