1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
//! IPC Port
//!
//! A Port represents an endpoint which can be connected to, in order to
//! establish a Session. It is split in two different part: ServerPort and
//! ClientPort. The ClientPort has a `connect` operation, while a ServerPort has
//! an `accept` operation.
//!
//! Those work as a rendez-vous, meaning both operations wait for each-other:
//! The `connect` operation blocks until a ServerPort calls `accept`. Similarly,
//! the `accept` operation waits until a ClientPort `connect`s. Once the two
//! operation meet, a `Session` is created. The `accept` operation will return a
//! `ServerSession`, while the `connect` operation returns a `ClientSession`.
//!
//! Additionally, a ServerPort implements the Waitable trait, allowing it to be
//! used with the `event::wait` function. This will wait until the associated
//! ClientPort had its connect operation called.
//!
//! ```rust
//! let (server, client) = Port::new();
//! let client_sess = client.connect();
//! // In a separate thread
//! let server_sess = server.accept();
//! ```

use crate::scheduler;
use alloc::vec::Vec;
use alloc::sync::{Arc, Weak};
use crate::sync::SpinLock;
use crate::error::UserspaceError;
use crate::event::{self, Waitable};
use crate::process::ThreadStruct;
use core::sync::atomic::{AtomicUsize, Ordering};
use crate::ipc::session::{self, ClientSession, ServerSession};

/// An endpoint which can be connected to.
#[derive(Debug)]
struct Port {
    /// List of incoming connection requests.
    incoming_connections: SpinLock<Vec<Arc<IncomingConnection>>>,
    /// List of threads waiting for a connection request.
    accepters: SpinLock<Vec<Weak<ThreadStruct>>>,
    /// Number of active ServerPort. When it drops to 0, future connection
    /// attempts will faill with [UserspaceError::PortRemoteDead].
    servercount: AtomicUsize,
}

/// The client side of a Port.
///
/// This side can call connect().
#[derive(Debug, Clone)]
pub struct ClientPort(Arc<Port>);

/// The server side of a Port.
///
/// This is necessary for accepting connections on a port. Its only operation
/// is accept(), which returns a ServerSession. It implements Waitable, which
/// waits until its associated ClientPort called connect().
#[derive(Debug)]
pub struct ServerPort(Arc<Port>);

impl Port {
    /// Returns a ClientPort from this Port.
    fn client(this: Arc<Self>) -> ClientPort {
        ClientPort(this)
    }

    /// Returns a ServerPort from this Port.
    fn server(this: Arc<Self>) -> ServerPort {
        this.servercount.fetch_add(1, Ordering::SeqCst);
        ServerPort(this)
    }
}

/// Create a new Port pair. Those ports are linked to each-other: The server will
/// receive connections from the client.
/// A port may only have max_sessions sessions active at a given time.
pub fn new(_max_sessions: u32) -> (ServerPort, ClientPort) {
    let port = Arc::new(Port {
        servercount: AtomicUsize::new(0),
        incoming_connections: SpinLock::new(Vec::new()),
        accepters: SpinLock::new(Vec::new())
    });
    (Port::server(port.clone()), Port::client(port))
}

// Wait for a connection to become available.
impl Waitable for ServerPort {
    fn is_signaled(&self) -> bool {
        !self.0.incoming_connections.lock().is_empty()
    }

    fn register(&self) {
        let mut accepters = self.0.accepters.lock();
        let curproc = scheduler::get_current_thread();

        if !accepters.iter().filter_map(|v| v.upgrade()).any(|v| Arc::ptr_eq(&curproc, &v)) {
            accepters.push(Arc::downgrade(&curproc));
        }
    }
}

impl Clone for ServerPort {
    fn clone(&self) -> Self {
        assert!(self.0.servercount.fetch_add(1, Ordering::SeqCst) != usize::max_value(), "Overflow when incrementing servercount");
        ServerPort(self.0.clone())
    }
}

impl Drop for ServerPort {
    fn drop(&mut self) {
        let count = self.0.servercount.fetch_sub(1, Ordering::SeqCst);
        assert!(count != 0, "Overflow when decrementing servercount");
        if count == 1 {
            debug!("Last ServerPort dropped");
            // We're dead jim.
            let mut internal = self.0.incoming_connections.lock();

            for request in internal.drain(..) {
                scheduler::add_to_schedule_queue(request.creator.clone());
            }
        }
    }
}

/// Represents a connection request from the creator thread.
#[derive(Debug)]
struct IncomingConnection {
    /// Session that this connection request is for.
    session: SpinLock<Option<ClientSession>>,
    /// Thread that wants to connect to this Port.
    creator: Arc<ThreadStruct>
}

impl ServerPort {
    /// Accept a new connection on the Port.
    pub fn accept(&self) -> Result<ServerSession, UserspaceError> {
        loop {
            // Wait for incoming_connections to contain a connection.
            let _ = event::wait(Some(self as &dyn Waitable))?;

            // Acquire the connection.
            if let Some(incoming) = self.0.incoming_connections.lock().pop() {
                let mut lock = incoming.session.lock();

                // Check if it was already handled by another accepter!
                // This shouldn't happen since we pop it from the queue above.
                assert!(lock.is_none(), "Handled connection request still in incoming conn queue.");

                // We can associate a session to this now.
                let (server, client) = session::new();
                *lock = Some(client);

                // Wake up the creator.
                // **VERY IMPORTANT**: This should be done with the LOCK HELD!!!
                debug!("Resuming {}", incoming.creator.process.name);
                scheduler::add_to_schedule_queue(incoming.creator.clone());

                // We're done!
                return Ok(server);
            }
        }
    }
}

impl ClientPort {
    /// Connects to this port.
    pub fn connect(&self) -> Result<ClientSession, UserspaceError> {
        let incoming = Arc::new(IncomingConnection {
            session: SpinLock::new(None),
            creator: scheduler::get_current_thread()
        });

        let mut guard = incoming.session.lock();
        self.0.incoming_connections.lock().push(incoming.clone());

        let session = loop {
            // If no handle to the server exist anymore, give up.
            if self.0.servercount.load(Ordering::SeqCst) == 0 {
                return Err(UserspaceError::PortRemoteDead);
            }

            // First, wake up an accepter
            while let Some(item) = self.0.accepters.lock().pop() {
                if let Some(thread) = item.upgrade() {
                    scheduler::add_to_schedule_queue(thread);
                    break;
                }
            }

            // Wait for it to do its job, and wake us up
            guard = scheduler::unschedule(&incoming.session, guard)?;

            // Make sure it did its job. If it didn't, try again.
            if let Some(s) = guard.take() {
                break s;
            }
        };

        Ok(session)
    }
}