1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
//! This crate is x86_64's little brother. It provides i386 specific functions //! and data structures, and access to various system registers. #![cfg(any(target_arch = "x86", test, doc))] #![allow(dead_code)] pub mod acpi; #[macro_use] pub mod registers; pub mod stack; pub mod multiboot; pub mod structures; pub mod process_switch; pub mod gdt; pub mod interrupt; pub mod interrupt_service_routines; pub mod pio { //! Port IO //! //! Look at libutils::io for more documentation. pub use crate::utils::io::Pio; } pub mod instructions { //! Low level functions for special i386 instructions. pub mod tables { //! Instructions for loading descriptor tables (GDT, IDT, etc.). use crate::i386::structures::gdt::SegmentSelector; /// A struct describing a pointer to a descriptor table (GDT / IDT). /// This is in a format suitable for giving to 'lgdt' or 'lidt'. #[derive(Clone, Copy, Debug)] #[repr(C, packed)] pub struct DescriptorTablePointer { /// Size of the DT. pub limit: u16, /// Physical address of the memory region containing the DT. pub base: u32, } /// Load GDT table. /// /// # Safety /// /// The gdt argument must be a valid table pointer, containing a pointer /// in physical memory to a correct GDT. The meaning of a "correct GDT" /// is left as an exercise to the reader. pub unsafe fn lgdt(gdt: DescriptorTablePointer) { llvm_asm!("lgdt ($0)" :: "r" (&gdt) : "memory" : "volatile"); } /// Store GDT table. pub fn sgdt() -> DescriptorTablePointer { unsafe { let mut out: DescriptorTablePointer = DescriptorTablePointer { base: 0, limit: 0 }; // This *requires* the =*m bound. For whatever reason, using =r causes UB, the // compiler starts wildly reordering SGDTs and LGDTs, even with volatile. llvm_asm!("sgdt $0" : "=*m"(&mut out) :: "memory" : "volatile"); out } } /// Load LDT table. /// /// # Safety /// /// The ldt must point to a valid LDT segment in the GDT. Note that /// modifying the current LDT might cause pointer invalidation. pub unsafe fn lldt(ldt: SegmentSelector) { llvm_asm!("lldt $0" :: "r" (ldt.0) : "memory"); } // TODO: Goes somewhere else. /// Sets the task register to the given TSS segment. /// /// # Safety /// /// segment must point to a valid TSS segment in the GDT. pub unsafe fn ltr(segment: SegmentSelector) { llvm_asm!("ltr $0" :: "r"(segment.0)); } /// Load IDT table. /// /// # Safety /// /// The idt argument must be a valid table pointer, containing a pointer /// in physical memory to a correct IDT. The meaning of a "correct IDT" /// is left as an exercise to the reader. pub unsafe fn lidt(idt: DescriptorTablePointer) { llvm_asm!("lidt ($0)" :: "r" (&idt) : "memory"); } } pub mod segmentation { //! Provides functions to read and write segment registers. use crate::i386::structures::gdt::SegmentSelector; /// Reload code segment register. /// Note this is special since we can not directly move /// to %cs. Instead we push the new segment selector /// and return value on the stack and use lretq /// to reload cs and continue at 1:. /// /// # Safety /// /// Sel must point to a present, valid segment in the GDT or LDT. /// Changing a segment will cause pointers to become invalidated. The /// only sound way to use this function is if the target segment has the /// same layout as the original segment. pub unsafe fn set_cs(sel: SegmentSelector) { llvm_asm!("pushl $0; \ pushl $$1f; \ lretl; \ 1:" :: "ri" (u64::from(sel.0)) : "rax" "memory"); } /// Reload stack segment register. /// /// # Safety /// /// Sel must point to a present, valid segment in the GDT or LDT. /// Changing a segment will cause pointers to become invalidated. The /// only sound way to use this function is if the target segment has the /// same layout as the original segment. pub unsafe fn load_ss(sel: SegmentSelector) { llvm_asm!("movw $0, %ss " :: "r" (sel.0) : "memory"); } /// Reload data segment register. /// /// # Safety /// /// Sel must point to a present, valid segment in the GDT or LDT. /// Changing a segment will cause pointers to become invalidated. The /// only sound way to use this function is if the target segment has the /// same layout as the original segment. pub unsafe fn load_ds(sel: SegmentSelector) { llvm_asm!("movw $0, %ds " :: "r" (sel.0) : "memory"); } /// Reload es segment register. /// /// # Safety /// /// Sel must point to a present, valid segment in the GDT or LDT. /// Changing a segment will cause pointers to become invalidated. The /// only sound way to use this function is if the target segment has the /// same layout as the original segment. pub unsafe fn load_es(sel: SegmentSelector) { llvm_asm!("movw $0, %es " :: "r" (sel.0) : "memory"); } /// Reload fs segment register. /// /// # Safety /// /// Sel must point to a present, valid segment in the GDT or LDT. /// Changing a segment will cause pointers to become invalidated. The /// only sound way to use this function is if the target segment has the /// same layout as the original segment. pub unsafe fn load_fs(sel: SegmentSelector) { llvm_asm!("movw $0, %fs " :: "r" (sel.0) : "memory"); } /// Reload gs segment register. /// /// # Safety /// /// Sel must point to a present, valid segment in the GDT or LDT. /// Changing a segment will cause pointers to become invalidated. The /// only sound way to use this function is if the target segment has the /// same layout as the original segment. pub unsafe fn load_gs(sel: SegmentSelector) { llvm_asm!("movw $0, %gs " :: "r" (sel.0) : "memory"); } /// Returns the current value of the code segment register. pub fn cs() -> SegmentSelector { let segment: u16; unsafe { llvm_asm!("mov %cs, $0" : "=r" (segment) ) }; SegmentSelector(segment) } /// Read the value of the stack segment register. pub fn ss() -> SegmentSelector { let segment: u16; unsafe { llvm_asm!("mov %ss, $0" : "=r" (segment) ) }; SegmentSelector(segment) } /// Read the value of the data segment register. pub fn ds() -> SegmentSelector { let segment: u16; unsafe { llvm_asm!("mov %ds, $0" : "=r" (segment) ) }; SegmentSelector(segment) } /// Read the value of the es segment register. pub fn es() -> SegmentSelector { let segment: u16; unsafe { llvm_asm!("mov %es, $0" : "=r" (segment) ) }; SegmentSelector(segment) } /// Read the value of the fs segment register. pub fn fs() -> SegmentSelector { let segment: u16; unsafe { llvm_asm!("mov %fs, $0" : "=r" (segment) ) }; SegmentSelector(segment) } /// Read the value of the gs segment register. pub fn gs() -> SegmentSelector { let segment: u16; unsafe { llvm_asm!("mov %gs, $0" : "=r" (segment) ) }; SegmentSelector(segment) } } pub mod interrupts { //! Interrupt disabling functionality. /// Enable interrupts /// /// # Safety /// /// Enabling interrupts when they are disabled can break critical /// sections based on [SpinLockIRQ](crate::sync::SpinLockIRQ). pub unsafe fn sti() { llvm_asm!("sti" :::: "volatile"); } /// Disable interrupts /// /// # Safety /// /// Should be paired with a call to [sti]. While interrupts are /// disabled, care should be taken not to sleep in any way, as this will /// cause a deadlock. pub unsafe fn cli() { llvm_asm!("cli" :::: "volatile"); } /// Waits until an interrupt is fired pub fn hlt() { unsafe { // Safety: HLT won't cause undefined behavior. Calling it might // cause a deadlock if interrupts are disabled, but that's not a // safety concern. llvm_asm!("hlt" :::: "volatile"); } } /// Returns whether interrupts are enabled. pub fn are_enabled() -> bool { use crate::i386::registers::eflags::{self, EFlags}; eflags::read().contains(EFlags::INTERRUPT_FLAG) } /// Run a closue with disabled interrupts. /// /// Run the given closure, disabling interrupts before running it (if they aren't already disabled). /// Afterwards, interrupts are enabling again if they were enabled before. /// /// If you have other `sti` and `cli` calls _within_ the closure, things may not work as expected. /// /// # Examples /// /// ```ignore /// // interrupts are enabled /// without_interrupts(|| { /// // interrupts are disabled /// without_interrupts(|| { /// // interrupts are disabled /// }); /// // interrupts are still disabled /// }); /// // interrupts are enabled again /// ``` pub fn without_interrupts<F, R>(f: F) -> R where F: FnOnce() -> R, { // true if the interrupt flag is set (i.e. interrupts are enabled) let saved_intpt_flag = are_enabled(); // if interrupts are enabled, disable them for now if saved_intpt_flag { unsafe { cli(); } } // do `f` while interrupts are disabled let ret = f(); // re-enable interrupts if they were previously enabled if saved_intpt_flag { unsafe { sti(); } } // return the result of `f` to the caller ret } } } /// Represents a protection ring level. #[derive(Debug, Copy, Clone, PartialEq, Eq)] #[repr(u8)] pub enum PrivilegeLevel { /// Privilege-level 0 (most privilege): This level is used by critical system-software /// components that require direct access to, and control over, all processor and system /// resources. This can include BIOS, memory-management functions, and interrupt handlers. Ring0 = 0, /// Privilege-level 1 (moderate privilege): This level is used by less-critical system- /// software services that can access and control a limited scope of processor and system /// resources. Software running at these privilege levels might include some device drivers /// and library routines. The actual privileges of this level are defined by the /// operating system. Ring1 = 1, /// Privilege-level 2 (moderate privilege): Like level 1, this level is used by /// less-critical system-software services that can access and control a limited scope of /// processor and system resources. The actual privileges of this level are defined by the /// operating system. Ring2 = 2, /// Privilege-level 3 (least privilege): This level is used by application software. /// Software running at privilege-level 3 is normally prevented from directly accessing /// most processor and system resources. Instead, applications request access to the /// protected processor and system resources by calling more-privileged service routines /// to perform the accesses. Ring3 = 3, } impl From<u8> for PrivilegeLevel { fn from(ring: u8) -> PrivilegeLevel { PrivilegeLevel::from_u8(ring) } } impl PrivilegeLevel { /// Creates a `PrivilegeLevel` from a numeric value. The value must be in the range 0..4. /// /// This function panics if the passed value is >3. pub fn from_u8(value: u8) -> PrivilegeLevel { match value { 0 => PrivilegeLevel::Ring0, 1 => PrivilegeLevel::Ring1, 2 => PrivilegeLevel::Ring2, 3 => PrivilegeLevel::Ring3, i => panic!("{} is not a valid privilege level", i), } } } /// The Task State Segment (TSS) is a special data structure for x86 processors which holds /// information about a task. The TSS is primarily suited for hardware multitasking, /// where each individual process has its own TSS. /// ([see OSDEV](https://wiki.osdev.org/TSS)) #[repr(C, align(128))] // According to the IA32-E PDF, volume 3, 7.2.1: // If paging is used: // - Avoid placing a page boundary in the part of the TSS that the processor // reads during a task switch (the first 104 bytes). The processor may not // correctly perform address translations if a boundary occurs in this area. // During a task switch, the processor reads and writes into the first 104 // bytes of each TSS (using contiguous physical addresses beginning with the // physical address of the first byte of the TSS). So, after TSS access // begins, if part of the 104 bytes is not physically contiguous, the // processor will access incorrect information without generating a // page-fault exception. #[derive(Copy, Clone, Debug)] #[allow(missing_docs, clippy::missing_docs_in_private_items)] pub struct TssStruct { pub link: u16, _reserved1: u16, pub esp0: u32, pub ss0: u16, _reserved2: u16, pub esp1: u32, pub ss1: u16, _reserved3: u16, pub esp2: u32, pub ss2: u16, _reserved4: u16, pub cr3: u32, pub eip: u32, pub eflags: u32, pub eax: u32, pub ecx: u32, pub edx: u32, pub ebx: u32, pub esp: u32, pub ebp: u32, pub esi: u32, pub edi: u32, pub es: u16, _reserved5: u16, pub cs: u16, _reserved6: u16, pub ss: u16, _reserved7: u16, pub ds: u16, _reserved8: u16, pub fs: u16, _reserved9: u16, pub gs: u16, _reserveda: u16, pub ldt_selector: u16, _reservedb: u16, _reservedc: u16, pub iopboffset: u16, } impl TssStruct { /// Creates an empty TssStruct. /// /// All fields are set to `0`, suitable for static declarations, so that it can live in the `.bss`. /// /// The TssStruct must then be initialized with [init]. /// /// Note that until it is initialized properly, the `.iopboffset` field will be invalid. /// /// [init]: TssStruct::init pub const fn empty() -> TssStruct { TssStruct { _reserved1: 0, link: 0, esp0: 0, _reserved2: 0, ss0: 0, esp1: 0, _reserved3: 0, ss1: 0, esp2: 0, _reserved4: 0, ss2: 0, cr3: 0, eip: 0, eflags: 0, eax: 0, ecx: 0, edx: 0, ebx: 0, esp: 0, ebp: 0, esi: 0, edi: 0, _reserved5: 0, es: 0, _reserved6: 0, cs: 0, _reserved7: 0, ss: 0, _reserved8: 0, ds: 0, _reserved9: 0, fs: 0, _reserveda: 0, gs: 0, _reservedb: 0, ldt_selector: 0, iopboffset: 0, _reservedc: 0, } } /// Fills the TSS. /// /// The TSS is filled with kernel segments selectors, and the current cr3. /// Registers are set to 0. pub fn init(&mut self) { let ds = gdt::GdtIndex::KData.selector().0; let cs = gdt::GdtIndex::KCode.selector().0; let ss = gdt::GdtIndex::KStack.selector().0; let cr3 = crate::paging::read_cr3().addr() as u32; let ldt_selector = gdt::GdtIndex::LDT.selector().0; *self = TssStruct { ss0: ss, ss1: ss, ss2: ss, cr3: cr3, ldt_selector: ldt_selector, es: ds, cs: cs, ss: ss, ds: ds, fs: ds, gs: ds, iopboffset: ::core::mem::size_of::<TssStruct>() as u16, ..TssStruct::empty() } } /// Set the stack pointer used to handle interrupts occuring while running /// in Ring3. /// /// If an interrupt occurs while running in Ring3, it would be a security /// problem to use the user-controlled stack to handle the interrupt. To /// avoid this, we can tell the CPU to instead run the interrupt handler in /// a separate stack. pub fn set_esp0_stack(&mut self, esp: u32) { self.esp0 = esp; } /// Set the IP of the current task struct. When we hardware task switch to /// this TSS, we will resume running at the given instruction. pub fn set_ip(&mut self, eip: u32) { self.eip = eip; } }