1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
//! GDT Handler //! //! The Global Descriptor Table is responsible for segmentation of memory. //! //! Since we manage memory permissions in the paging, we want to set-up our //! segments so that we have a flat-memory model, i.e. having segments with //! `base = 0; limit = 0xffffffff`. //! //! ### GDT segments //! //! | Index | Found in | Maps to | Purpose | //! |--------------------------|----------------------------------------|--------------------------------|-------------------------------------------------------------------| //! | [`GdtIndex::Null`] | nowhere (hopefully) | _ | _ | //! | [`GdtIndex::KCode`] | `cs`, while in kernel code | flat: `0x00000000..0xffffffff` | kernel's code segment | //! | [`GdtIndex::KData`] | `ds`, `es`, while in kernel code | flat: `0x00000000..0xffffffff` | kernel's data segment | //! | [`GdtIndex::KTls`] | `gs`, while in kernel code | kernel's cpu-locals | kernel sets-up cpu-locals at this address | //! | [`GdtIndex::KStack`] | `ss`, while in kernel code | flat: `0x00000000..0xffffffff` | kernel's stack segment | //! | [`GdtIndex::UCode`] | `cs`, while in user code | flat: `0x00000000..0xffffffff` | user's code segment | //! | [`GdtIndex::UData`] | `ds`, `es`, while in user code | flat: `0x00000000..0xffffffff` | user's data segment | //! | [`GdtIndex::UTlsRegion`] | `fs`, while in user code | `&`[`TLS`]`..&`[`TLS`]`+0x200` | user can get the address of its [`TLS`] from this selector | //! | [`GdtIndex::UTlsElf`] | `gs`, while in user code | User-defined | user can set-up elf TLS at this address | //! | [`GdtIndex::UStack`] | `ss`, while in user code | flat: `0x00000000..0xffffffff` | | //! | [`GdtIndex::LDT`] | _ | Points to the [`GLOBAL_LDT`] | | //! | [`GdtIndex::TSS`] | IDT Double fault vector | Points to the [`MAIN_TASK`] | Double fault exception backups registers to this TSS | //! | [`GdtIndex::FTSS`] | IDT Double fault vector | | Double fault exception loads registers from this TSS | //! //! ##### UTlsRegion //! //! The kernel allocates a 0x200-bytes region for every thread, and always makes `fs` point to it //! when jumping to userspace. See [`TLS`] for more. //! //! This region is thread local, its address is switched at every thread-switch. //! //! ##### UTlsElf: //! //! The segment pointed by `gs` is controlled by the user. It can set its address/limit with //! [`svcSetThreadArea`]. The segment it chooses to use is local to every thread, and defaults to `0x00000000..0xffffffff`. //! //! Typically, the user will want to make `gs` point to its elf TLS. //! //! This segment is thread local, its address and size are switched at every thread-switch. //! //! ### LDT segments: //! //! None :) //! //! ## x86_64 //! //! Because x86_64 uses `fs` for tls instead of `gs`, the purpose of `gs` and `fs` are swapped: //! //! | Index | Found in | Maps to | Purpose | //! |---------------------|----------------------------------------|--------------------------------|-------------------------------------------------------------------| //! | MSR | `fs`, while in kernel code | kernel's cpu-locals | kernel sets-up cpu-locals at this address | //! | MSR | `gs`, while in user code | `&`[`TLS`]`..&`[`TLS`]`+0x200` | user can get the address of its [`TLS`] from this selector | //! | MSR | `fs`, while in user code | User-defined | user can set-up elf TLS at this address | //! //! [`GdtIndex::Null`]: GdtIndex::Null //! [`GdtIndex::KCode`]: GdtIndex::KCode //! [`GdtIndex::KData`]: GdtIndex::KData //! [`GdtIndex::KTls`]: GdtIndex::KTls //! [`GdtIndex::KStack`]: GdtIndex::KStack //! [`GdtIndex::UCode`]: GdtIndex::UCode //! [`GdtIndex::UData`]: GdtIndex::UData //! [`GdtIndex::UTlsRegion`]: GdtIndex::UTlsRegion //! [`GdtIndex::UTlsElf`]: GdtIndex::UTlsElf //! [`GdtIndex::UStack`]: GdtIndex::UStack //! [`GdtIndex::LDT`]: GdtIndex::LDT //! [`GdtIndex::TSS`]: GdtIndex::TSS //! [`GdtIndex::FTSS`]: GdtIndex::FTSS //! [`TLS`]: sunrise_libkern::TLS //! [`GLOBAL_LDT`]: GLOBAL_LDT //! [`MAIN_TASK`]: MAIN_TASK //! [`svcSetThreadArea`]: crate::syscalls::set_thread_area #![allow(dead_code)] use crate::sync::{SpinLockIRQ, Once}; use bit_field::BitField; use core::mem::size_of; use core::ops::{Deref, DerefMut}; use core::fmt; use crate::i386::{PrivilegeLevel, TssStruct}; use crate::i386::structures::gdt::SegmentSelector; use crate::i386::instructions::tables::{lgdt, lldt, ltr, DescriptorTablePointer}; use crate::i386::instructions::segmentation::*; use crate::paging::PAGE_SIZE; use sunrise_libkern::TLS; use crate::sync::SpinLock; use bitfield::fmt::Debug; /// The global GDT. Needs to be initialized with [init_gdt]. /// /// Modifying it disables interrupts. pub static GDT: Once<SpinLockIRQ<GdtManager>> = Once::new(); /// The global LDT used by all the processes. /// /// Empty. static GLOBAL_LDT: Once<DescriptorTable> = Once::new(); /// Index in the GDT of each segment descriptor. #[repr(usize)] #[derive(Debug, Clone, Copy)] pub enum GdtIndex { /// The index in the GDT of the null descriptor. Null = 0, /// The index in the GDT of the Kernel code segment descriptor. KCode = 1, /// The index in the GDT of the Kernel data segment descriptor. KData = 2, /// The index in the GDT of the Kernel thread local storage ("cpu-locals") segment descriptor. KTls = 3, /// The index in the GDT of the Kernel stack segment descriptor. KStack = 4, /// The index in the GDT of the Userland code segment descriptor. UCode = 5, /// The index in the GDT of the Userland data segment descriptor. UData = 6, /// The index in the GDT of the Userland thread local storage segment descriptor. UTlsRegion = 7, /// The index in the GDT of the Userland thread local storage segment descriptor. UTlsElf = 8, /// The index in the GDT of the Userland stack segment descriptor. UStack = 9, /// The index in the GDT of the LDT descriptor. LDT = 10, /// The index in the GDT of the main TSS descriptor. TSS = 11, /// The index in the GDT of the double fault TSS descriptor. FTSS = 12, /// The number of descriptors in the GDT. DescCount, } impl GdtIndex { /// Turns a segment descriptor index to a segment selector. /// /// The ring part of the selector will be `0b00` for K* segments, and `0b11` for U* segments. pub fn selector(self) -> SegmentSelector { match self { GdtIndex::KCode | GdtIndex::KData | GdtIndex::KTls | GdtIndex::KStack | GdtIndex::LDT | GdtIndex::TSS | GdtIndex::FTSS => SegmentSelector::new(self as u16, PrivilegeLevel::Ring0), GdtIndex::UCode | GdtIndex::UData | GdtIndex::UTlsRegion | GdtIndex::UTlsElf | GdtIndex::UStack => SegmentSelector::new(self as u16, PrivilegeLevel::Ring3), _ => panic!("Cannot get segment selector of {:?}", self) } } } /// Initializes the GDT. /// /// Creates a GDT with a flat memory segmentation model. It will create 4 kernel /// segments (code, data, tls, stack), 5 user segments (code, data, tls region, tls elf, stack), an /// LDT, and a TSS for the main task. /// /// This function should only be called once. Further calls will be silently /// ignored. pub fn init_gdt() { // fill LDT with null descriptors GLOBAL_LDT.call_once(Default::default); GDT.call_once(|| { let mut gdt = GdtManager::default(); // Push the null descriptor gdt.table[GdtIndex::Null as usize] = DescriptorTableEntry::null_descriptor(); // Push a kernel code segment gdt.table[GdtIndex::KCode as usize] = DescriptorTableEntry::new( 0, 0xffffffff, true, PrivilegeLevel::Ring0, ); // Push a kernel data segment gdt.table[GdtIndex::KData as usize] = DescriptorTableEntry::new( 0, 0xffffffff, false, PrivilegeLevel::Ring0, ); // Push a dummy tls segment, will be moved and resized appropriately later gdt.table[GdtIndex::KTls as usize] = DescriptorTableEntry::new( 0, 0xffffffff, false, PrivilegeLevel::Ring0, ); // Push a kernel stack segment gdt.table[GdtIndex::KStack as usize] = DescriptorTableEntry::new( 0, 0xffffffff, false, PrivilegeLevel::Ring0, ); // Push a userland code segment gdt.table[GdtIndex::UCode as usize] = DescriptorTableEntry::new( 0, 0xffffffff, true, PrivilegeLevel::Ring3, ); // Push a userland data segment gdt.table[GdtIndex::UData as usize] = DescriptorTableEntry::new( 0, 0xffffffff, false, PrivilegeLevel::Ring3, ); // Push a userland thread local storage segment, will be moved at every thread-switch. gdt.table[GdtIndex::UTlsRegion as usize] = DescriptorTableEntry::new( 0, (size_of::<TLS>() - 1) as u32, false, PrivilegeLevel::Ring3, ); // Push a userland thread local storage segment, will be moved at every thread-switch. gdt.table[GdtIndex::UTlsElf as usize] = DescriptorTableEntry::new( 0, 0xffffffff, false, PrivilegeLevel::Ring3, ); // Push a userland stack segment gdt.table[GdtIndex::UStack as usize] = DescriptorTableEntry::new( 0, 0xffffffff, false, PrivilegeLevel::Ring3, ); // Global LDT gdt.table[GdtIndex::LDT as usize] = DescriptorTableEntry::new_ldt(&GLOBAL_LDT.r#try().unwrap(), PrivilegeLevel::Ring0); // Main task let mut main_task = MAIN_TASK.lock(); main_task.init(); let main_tss_ref: &'static TssStruct = unsafe { // creating a static ref to tss. // kinda-safe: the tss is in a static so it is 'static, but is behind a lock // and will still be accessed by the hardware with no consideration for the lock. (&main_task.tss as *const TssStruct).as_ref().unwrap() }; gdt.table[GdtIndex::TSS as usize] = DescriptorTableEntry::new_tss(main_tss_ref, PrivilegeLevel::Ring0, 0x2001); // Double fault task let mut fault_task = DOUBLE_FAULT_TASK.lock(); fault_task.init(); let fault_task_stack_end = unsafe { &DOUBLE_FAULT_TASK_STACK.0 } as *const u8 as usize + size_of::<DoubleFaultTaskStack>(); fault_task.esp = fault_task_stack_end as u32; fault_task.esp0 = fault_task_stack_end as u32; fault_task.eip = 0; // will be set by IDT init. let fault_task_ref: &'static TssStruct = unsafe { // creating a static ref to tss. // safety: the tss is in a static so it is 'static, but is behind a lock // and will still be accessed by the hardware with no consideration for the lock. (&*fault_task as *const TssStruct).as_ref().unwrap() }; gdt.table[GdtIndex::FTSS as usize] = DescriptorTableEntry::new_tss(fault_task_ref, PrivilegeLevel::Ring0, 0x0); SpinLockIRQ::new(gdt) }); // initialized, now let's use it ! let cs = GdtIndex::KCode.selector(); let ds = GdtIndex::KData.selector(); let fs = GdtIndex::UTlsRegion.selector(); let gs = GdtIndex::KTls.selector(); let ss = GdtIndex::KStack.selector(); let ldt_ss = GdtIndex::LDT.selector(); let tss_ss = GdtIndex::TSS.selector(); let mut gdt = GDT.r#try().unwrap().lock(); debug!("Loading GDT {:#?}\ncs: {:?}\nds: {:?}\nes: {:?}\nfs: {:?}\ngs: {:?}\nss: {:?}\nldt: {:?}\ntss: {:?}", gdt.deref().table, cs, ds, ds, fs, gs, ss, ldt_ss, tss_ss); gdt.commit(Some(cs), Some(ds), Some(ds), Some(fs), Some(gs), Some(ss)); unsafe { debug!("Loading LDT {:?}", ldt_ss); lldt(ldt_ss); debug!("Loading Task {:?}", tss_ss); ltr(tss_ss); } info!("Loaded GDT {:#?}\ncs: {:?}\nds: {:?}\nes: {:?}\nfs: {:?}\ngs: {:?}\nss: {:?}\nldt: {:?}\ntss: {:?}", gdt.deref().table, cs, ds, ds, fs, gs, ss, ldt_ss, tss_ss); } /// Safety wrapper that manages the lifetime of GDT tables. /// /// Although Intel's guide doesn't really say much about it, modifying a GDT /// "live" is probably a terrible idea. To work around this, the GdtManager keeps /// two copies of the DescriptorTable, one being the currently active one (loaded /// in the GDTR), and the other being where the changes to the GDT go to until /// they are committed. /// /// When `commit` is called, the internal GDT and current GDTR are swapped. /// /// This struct's implementation of `Deref` and `DerefMut` will always give a reference to the table /// currently not in use, so you can make modifications to it, and call `commit` afterwards. #[derive(Debug, Default)] pub struct GdtManager { /// One of the two tables. table_a: DescriptorTable, /// One of the two tables. table_b: DescriptorTable, /// The table currently pointed to by GDTR. `0` is `table_a`, `1` is `table_b`. table_selector: bool } impl GdtManager { /// Commit the changes in the currently unloaded table, and update segment registers. /// /// # Selectors /// /// To make a segment register point to a new descriptor, pass `Some(selector)` to this function. /// /// If `None` is passed, the register will be reloaded from its current value. /// This is what you want if you only updated the content of the descriptor. /// We always perform a reload of all registers to make sure they reflect the state of the GDT, /// in case the user modified it. pub fn commit(&mut self, new_cs: Option<SegmentSelector>, new_ds: Option<SegmentSelector>, new_es: Option<SegmentSelector>, new_fs: Option<SegmentSelector>, new_gs: Option<SegmentSelector>, new_ss: Option<SegmentSelector>) { let (previous_in_use, to_load) = if !self.table_selector { (&mut self.table_a, &mut self.table_b) } else { (&mut self.table_b, &mut self.table_a) }; // first make gdtr point to the new table, and reload segment selector to_load.load_global(new_cs, new_ds, new_es, new_fs, new_gs, new_ss); // copy the new table to the old one previous_in_use.table.copy_from_slice(&to_load.table); // and toggle selector self.table_selector = !self.table_selector; } } impl Deref for GdtManager { type Target = DescriptorTable; /// Deref always returns a reference to the table not in use, so it can be modified, /// before being committed. fn deref(&self) -> &DescriptorTable { if !self.table_selector { &self.table_b } else { &self.table_a } } } impl DerefMut for GdtManager { /// DerefMut always returns a reference to the table not in use, so it can be modified, /// before being committed. fn deref_mut(&mut self) -> &mut DescriptorTable { if !self.table_selector { &mut self.table_b } else { &mut self.table_a } } } /// The main TSS. See [MAIN_TASK]. #[repr(C)] pub struct MainTask { /// TssStruct of the main task. pub tss: TssStruct, /// Array of bits representing the io-space permissions: /// /// * `0`: this port is addressable. /// * `1`: this port is not addressable. pub iopb: [u8; 0x2001] } impl Debug for MainTask { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { f.debug_struct("MainTask") .field("tss", &self.tss) .field("iopb", &"*omitted*") .finish() } } impl MainTask { /// Creates an empty TSS. /// /// Suitable for static declaration, the whole structure should end up in the `.bss`. /// /// This means that the IOPB will be set to everything addressable. /// /// Must be initialised by calling [init]. /// /// [init]: MainTask::init const fn empty() -> MainTask { MainTask { tss: TssStruct::empty(), iopb: [0u8; 0x2001] } } /// Fills the TSS. /// /// The struct inherits the current task's values (except registers, which are set to 0). /// /// IOPB is set to nothing addressable. fn init(&mut self) { self.tss.init(); for v in &mut self.iopb[..] { *v = 0xFF } } } /// Main TSS /// /// Because Sunrise does not make use of Hardware Task Switching, we only allocate a single /// TSS that will be used by every process, we update it at every software task switch. /// /// We mostly set the `esp0` field, updating which stack the cpu will jump to when handling an /// exception/syscall. /// /// #### IOPB /// /// Right after the [TssStruct], the MAIN_TASK holds a bitarray indicating io-space permissions /// for the current process, one bit for every port: /// /// * `0`: this port is addressable. /// * `1`: this port is not addressable. /// /// This array is checked by the cpu every time a port is accessed by userspace, and we use it /// to enforce io-space policies. This array is updated at every task switch. /// /// The kernel bypasses this protection by having the `IOPL` set to `0b00` in `EFLAGS`, /// making the kernel able to access all ports at all times. /// /// ### Double fault /// /// The only exception to this is double faulting, which does use Hardware Task Switching, and /// for which we allocate a second TSS, see [DOUBLE_FAULT_TASK]. // TODO: per-cpu TSSs / GDT // BODY: There are multiple things that aren't ideal about the way we handle TSSs. // BODY: // BODY: ## Initialization // BODY: // BODY: TSSs must always be initialized with an iopb_offset of `size_of::<TSS>()`, // BODY: so that the TSS's data is not interpreted as the iopb. // BODY: // BODY: However, because MAIN_TASK has a huge iopb (0x2001 bytes), we want it to live in the // BODY: .bss, and be lazy initialized (iopb_offset value, and iopb array memset to 0xFF). // BODY: `lazy_static` seems appropriate for that, and we should use it, so we cannot *forget* to // BODY: initialize a TSS. // BODY: // BODY: DOUBLE_FAULT_TASK could be statically initialized, except for the `cr3` field. // BODY: // BODY: ## Per-cpu // BODY: // BODY: But we will likely want a MAIN and DOUBLE_FAULT TSS per core. However, they cannot trivially // BODY: be put behind a `#[thread_local]`, as they are initialized with the GDT, before cpu-locals // BODY: are initialized. It might be possible to make them `#[thread_local]` with some // BODY: post-initialization routine that switches to using the MAIN and DOUBLE_FAULT_TASK in the // BODY: cpu-local memory area instead of the static early one, after cpu-local have been initialized, // BODY: for core 0. // BODY: The static early one could do without an iopb, since we're not going to userspace with it. // BODY: // BODY: For other cores, having a `#[thead_local]` inside a `lazy_static!` seems to work, but I don't // BODY: yet know how cores are going to be started, whether they allocate/initialize their own // BODY: GDT + MAIN + DOUBLE_FAULT TSS, if it their parent core do it. // BODY: // BODY: Because of these unknowns, the search for a good design for TSSs/GDT is postponed. // BODY: // BODY: ## Locking // BODY: // BODY: Since the TSSs are supposed to be cpu-local, there is no reason for them to have a mutex // BODY: around them. An ideal design would be lock-less, which can either be achieved with `#[thread_local]`, // BODY: or some custom wrapper around an UnsafeCell just for TSSs. // BODY: // BODY: ## DOUBLE_FAULT's cr3 // BODY: // BODY: The DOUBLE_FAULT TSS(s)'s cr3 must point to a valid page directory, which will remain valid // BODY: (i.e. not be freed) for the entire lifetime of the kernel, and possibly updated when kernel // BODY: page tables are modified. // BODY: // BODY: For now, because we have no such hierarchy, we always make DOUBLE_FAULT's cr3 point // BODY: to the current cr3, and update it when we switch page table hierarchies. However the current // BODY: way we do kernel paging is not viable for SMP, and we might finally implement such a hierarchy // BODY: for SMP, we could then make DOUBLE_FAULT TSS(s) point to it. pub static MAIN_TASK: SpinLock<MainTask> = SpinLock::new(MainTask::empty()); /// Double fault TSS /// /// Double faulting will most likely occur after a kernel stack overflow. /// We can't use the regular way of handling exception, i.e. pushing some registers and handling /// the exception on the same stack that we were using, since it has overflowed. /// /// We must switch the stack when it happens, and the only way to do that is via a task gate. /// /// We setup a Tss whose `esp0` points to [DOUBLE_FAULT_TASK_STACK], /// its `eip` to the double fault handler, and make the double fault vector in IDT task gate to it. /// /// When a double fault occurs, the current (faulty) cpu registers values will be backed up /// to [MAIN_TASK], where the double fault handler can access them to work out what happened. /// /// ##### IOPB /// /// Unlike the [MAIN_TASK], this TSS does not have an associated IOPB. pub static DOUBLE_FAULT_TASK: SpinLock<TssStruct> = SpinLock::new(TssStruct::empty()); /// The stack used while handling a double fault. /// /// Just a page aligned array of bytes. #[repr(C, align(4096))] struct DoubleFaultTaskStack([u8; 4096]); /// The stack used while handling a double fault. See [DOUBLE_FAULT_TASK]. static mut DOUBLE_FAULT_TASK_STACK: DoubleFaultTaskStack = DoubleFaultTaskStack([0u8; PAGE_SIZE]); /// A structure containing our GDT. /// /// See [module level documentation]. /// /// [module level documentation]: super #[derive(Debug, Clone, Default)] pub struct DescriptorTable { /// The GDT table, an array of DescriptorTableEntry. pub table: [DescriptorTableEntry; GdtIndex::DescCount as usize], } impl DescriptorTable { /// Load this descriptor table into the GDTR, and reload the segment registers. fn load_global(&mut self, new_cs: Option<SegmentSelector>, new_ds: Option<SegmentSelector>, new_es: Option<SegmentSelector>, new_fs: Option<SegmentSelector>, new_gs: Option<SegmentSelector>, new_ss: Option<SegmentSelector>) { let ptr = DescriptorTablePointer { base: self.table.as_ptr() as u32, limit: (self.table.len() * size_of::<DescriptorTableEntry>()) as u16, }; unsafe { lgdt(ptr); // Reload segment selectors set_cs(match new_cs { Some(s) => s, None => cs() }); load_ds(match new_ds { Some(s) => s, None => ds()}); load_es(match new_es { Some(s) => s, None => es()}); load_fs(match new_fs { Some(s) => s, None => fs()}); load_gs(match new_gs { Some(s) => s, None => gs()}); load_ss(match new_ss { Some(s) => s, None => ss()}); } } } /// Lists the valid values of System Descriptor Types. // Trap/Task/Interrupt gates are voluntarily absent. This enum should only // contain descriptor types valid for GDT/LDT. IDT is kept separate. #[derive(Debug, Clone, Copy)] #[allow(clippy::missing_docs_in_private_items)] enum SystemDescriptorTypes { AvailableTss16 = 1, Ldt = 2, BusyTss16 = 3, CallGate16 = 4, AvailableTss32 = 9, BusyTss32 = 11, CallGate32 = 12, } /// An entry in the GDT/LDT. /// /// Those entries generally describe a segment. However, the DescriptorTable also /// contains special descriptors called "System Descriptors". Those are used for /// specifying different kind of memory regions used by the CPU, such as TSS, /// LDT, or Call Gates. #[repr(transparent)] #[derive(Clone, Copy)] pub struct DescriptorTableEntry(u64); impl fmt::Debug for DescriptorTableEntry { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> { //ES =0010 00000000 ffffffff 00c09300 DPL=0 DS [-WA] if self.0 == 0 { write!(f, "DescriptorTableEntry(NULLDESC)") } else { let ty = if self.0.get_bit(44) && self.0.get_bit(43) { "CS" } else if self.0.get_bit(44) { "DS" } else { match self.0.get_bits(40..44) { 1 => "TSS16-avl", 2 => "LDT", 3 => "TSS16-busy", 4 => "CALL16", 5 => "TASK", 6 => "INT16", 7 => "TRAP16", 9 => "TSS32-avl", 11 => "TSS32-busy", 12 => "CALL32", 14 => "INT32", 15 => "TRAP32", _ => "UNKN" } }; write!(f, "DescriptorTableEntry(base={:#010x}, limit={:#010x}, flags={:#010x}, DPL={:?}, type={})", self.get_base(), self.get_limit(), self.0, self.get_ring_level(), ty) } } } impl DescriptorTableEntry { /// Returns an empty descriptor. Using this descriptor is an error and will /// raise a GPF. Should only be used to create a descriptor to place at index /// 0 of the GDT. fn null_descriptor() -> DescriptorTableEntry { DescriptorTableEntry(0) } /// Creates an empty GDT descriptor, but with some flags set correctly fn new(base: u32, limit: u32, is_code: bool, priv_level: PrivilegeLevel) -> DescriptorTableEntry { let mut gdt = Self::null_descriptor(); // First, the constant values. // We always allow read access for code, and write access for data. gdt.0.set_bit(41, true); // Make extra sure we don't touch is_conformant by a million miles pole. gdt.0.set_bit(42, false); // This bit is set to 1 for segment descriptors, 0 for system descriptors. gdt.0.set_bit(44, true); // The segment is present. gdt.0.set_bit(47, true); // The size is always 32-bit protected mode. gdt.0.set_bit(54, true); gdt.0.set_bit(43, is_code); gdt.0.set_bits(45..47, priv_level as u64); gdt.set_base(base); gdt.set_limit(limit); gdt } /// Creates an empty GDT system descriptor of the given type. fn new_system(ty: SystemDescriptorTypes, base: u32, limit: u32, priv_level: PrivilegeLevel) -> DescriptorTableEntry { let mut gdt = Self::null_descriptor(); // Set the system descriptor type gdt.0.set_bits(40..44, ty as u64); // Set the privilege level. gdt.0.set_bits(45..47, priv_level as u64); // The segment is present. gdt.0.set_bit(47, true); gdt.set_base(base); gdt.set_limit(limit); gdt } /// Creates a new LDT descriptor. fn new_ldt(base: &'static DescriptorTable, priv_level: PrivilegeLevel) -> DescriptorTableEntry { let limit = if base.table.is_empty() { 0 } else { base.table.len() * size_of::<DescriptorTableEntry>() - 1 }; Self::new_system(SystemDescriptorTypes::Ldt, base as *const _ as u32, limit as u32, priv_level) } /// Creates a GDT descriptor pointing to a TSS segment fn new_tss(base: &'static TssStruct, priv_level: PrivilegeLevel, iobp_size: usize) -> DescriptorTableEntry { Self::new_system(SystemDescriptorTypes::AvailableTss32, base as *const _ as u32, (size_of::<TssStruct>() + iobp_size - 1) as u32, priv_level) } /// Gets the byte length of the entry, minus 1. pub fn get_limit(self) -> u32 { (self.0.get_bits(0..16) as u32) | ((self.0.get_bits(48..52) << 16) as u32) } /// Sets the entry's byte length to the given number plus one. Note that if /// the given length is higher than 65536, it should be properly /// page-aligned. /// /// # Panics /// /// Panics if the given limit is higher than 65536 and not page aligned. pub fn set_limit(&mut self, mut newlimit: u32) { if newlimit > 65536 && (newlimit & 0xFFF) != 0xFFF { panic!("Limit {} is invalid", newlimit); } if newlimit > 65536 { newlimit >>= 12; self.set_4k_granularity(true); } self.0.set_bits( 0..16, u64::from(newlimit.get_bits( 0..16))); self.0.set_bits(48..52, u64::from(newlimit.get_bits(16..20))); } /// Gets the base address of the entry. pub fn get_base(self) -> u32 { (self.0.get_bits(16..40) as u32) | ((self.0.get_bits(56..64) << 24) as u32) } /// Sets the base address of the entry. pub fn set_base(&mut self, newbase: u32) { self.0.set_bits(16..40, u64::from(newbase.get_bits( 0..24))); self.0.set_bits(56..64, u64::from(newbase.get_bits(24..32))); } /// CPU sets this bit to true when the segment is accessed. pub fn get_accessed(self) -> bool { self.0.get_bit(40) } /// - Code Segments: Whether read access for this segment is allowed. /// - Data Segments: Whether write access for this segment is allowed. pub fn is_readwrite_allowed(self) -> bool { self.0.get_bit(41) } /// - Code Segments: if true, code in this segment can be executed from a /// lower privilege level (example: ring3 can far jump into ring2 code). /// If false, the code segment can only be executed from the right DPL. /// - Data Segments: if true, the segment grows up. If false, the segment /// grows down. pub fn is_comformant(self) -> bool { self.0.get_bit(42) } /// Determines whether the segment is a code segment or a data segment. If /// true, this is a code segment and can be executed. If false, this is a /// data segment. pub fn is_executable(self) -> bool { self.0.get_bit(43) } // bit 44 is unused /// The privilege level associated with this segment. pub fn get_ring_level(self) -> PrivilegeLevel { PrivilegeLevel::from_u8(self.0.get_bits(45..47) as u8) } /// A segment needs to be present to have an effect. Using a not-present /// segment will cause an exception. pub fn get_present(self) -> bool { self.0.get_bit(47) } /// If true, the limit is a count of 4k pages. If false, it is a byte count. pub fn is_4k_granularity(self) -> bool { self.0.get_bit(55) } /// If true, the limit is a count of 4k pages. If false, it is a byte count. fn set_4k_granularity(&mut self, is: bool) { self.0.set_bit(55, is); } /// If true, this is a 32-bit segment. If false, it is a 16-bit selector. pub fn is_32bit(self) -> bool { self.0.get_bit(54) } } impl Default for DescriptorTableEntry { fn default() -> Self { DescriptorTableEntry::null_descriptor() } }